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THE ANALYTIC SOLUTION OF SEQUENTIAL SPACE-TIME

FRACTIONAL DIFFUSION EQUATION INCLUDING PERIODIC

BOUNDARY CONDITIONS

SÜLEYMAN ÇETINKAYA, ALI DEMIR AND HÜLYA KODAL SEVINDIR

Abstract. In this paper, the analytic solution of sequential space-time frac-

tional differential equation with periodic boundary conditions in one dimension

is established. It is constructed in the form of a Fourier series by taking the
eigenfunctions of Sturm-Liouville problem with fractional derivative in Caputo

sense into account.

1. Introduction

As partial differential equations (PDEs) of fractional order plays an important
role in modelling for the numerous processes and systems in various scientifc re-
search areas such as applied mathematics, physics chemistry etc., the interest of
this topic is increasing enourmously. Since the fractional derivative is non-local,
the model with fractional derivative for physical problems turns out to be the best
choice to analyze the behaviour of the complex non linear processes. That is why
it attracts increasing number of researchers. The derivative in the sense of Caputo
is one of the most common one since mathematical models with Caputo deriva-
tives gives better results compare to the analysis of ones including other fractional
derivatives. In literature increasing number of studies can be found supporting this
conclusion [1],[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [15], [16], [17], [18],
[19], [22], [23]. Moreover the Caputo derivative of constant is zero which is not hold
by many fractional derivatives. The solutions of fractional PDEs and ordinary dif-
ferential equations (ODEs) are determined in terms of Mittag-Leffler function. The
diffusion problem including fractional derivative in Caputo sense has been studied
by Sevindir and Demir [21]. This study can be regarded as an extension of it.

2. Preliminary Results

In this section, we recall fundamental definition and well known results about
fractional derivative in Caputo sense.

Definition 1. The qth order fractional derivative of u(t) in Caputo sense is defined
as
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Dqu (t) =
1

Γ (n− q)

∫ t

t0

(t− s)n−q−1
u(n)(s)ds, t ∈ [t0, t0 + T ] (2.1)

where u(n) (t) = dnu
dtn , n − 1 < q < n. Note that Caputo fractional derivative

is equal to integer order derivative when the order of the derivative is integer [14],
[20].

Definition 2. The qth order Caputo fractional derivative for 0 < q < 1 is defined
in the following form [14], [20]:

Dqu (t) =
1

Γ (1− q)

∫ t

t0

(t− s)−qu′(s)ds, t ∈ [t0, t0 + T ] (2.2)

The Mittag–Leffler function with two-parameters which is taken into account in
eigenvalue problem, is given by

Eα,β (λ(t− t0)
α

) =

∞∑
k=0

(λ(t− t0)
α

)
k

Γ (αk + β)
, α, β > 0 (2.3)

including constant λ. Especially, for t0 = 0, α = β = q we have

Eα,β (λtq) =

∞∑
k=0

(λtq)
k

Γ (qk + q)
, q > 0. (2.4)

Mittag–Leffler function coincides with exponential function i.e., E1,1 (λt) = eλt

for q = 1. For details see [14], [20].
The following significant functions are defined in terms of the Mittag–Leffler

function with two parameters as

sinq (µtq) =
Eq,1 (iµtq)− Eq,1 (−iµtq)

2i
=

∞∑
k=0

(−1)
k

(µtq)
2k+1

Γ ((2k + 1)q + 1)
(2.5)

and

cosq (µtq) =
Eq,1 (iµtq) + Eq,1 (−iµtq)

2
=

∞∑
k=0

(−1)
k

(µtq)
2k

Γ (2kq + 1)
(2.6)

Note that for q = 1 these functions are usual trigonometric functions sin(µt)
and cos(µt) .

The main goal of this study is to establish the analytic solution of following
sequential space-time fractional differential equations with periodic boundary and
initial condition.

Dα
t u (x, t) = γ2D2β

x u (x, t) , (2.7)

{
u (−l, t) = u (l, t)

Dβ
xu (−l, t) = Dβ

xu (l, t)
(2.8)

u (x, 0) = f(x) (2.9)

where 0 < α < 1, 1 < 2β < 2,−l ≤ x ≤ l, 0 ≤ t ≤ T, γ ∈ R.
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2.1. Inner Product. Let the vector space V be defined as span of the functions

sinβ

(
µ( x

b−a )
β
)

and cosβ

(
µ( x

b−a )
β
)

for fixed β where 0 < β ≤ 1, µ ∈ R on

the interval I = [a, b] , i.e., V = span{sinβ
(
µ( x

b−a )
β
)
, cosβ

(
µ( x

b−a )
β
)
}. As a

result the linear transformation T : V → span{sin
(
µx
b−a

)
, cos( µx

b−a ) } becomes

one-to-one and onto. Hence its inverse transformation T−1 exists. The mapping
< •, • >: V × V → R is defined as

< u (x;β) , v (x;β) > = T−1(

∫
Tu (x;β) .T v (x;β) dx)|bx=a (2.10)

where Tu (x;β) = u(x; 1) and Tv (x;β) = v(x; 1) [21].

3. Main Results

By means of separation of variables method, The generalized solution of above
problem is constructed in analytical form. Thus a solution of problem (2.7)-(2.9)
have the following form:

u (x, t;α, β) = X(x;β) T (t;α, β) (3.1)

where −l ≤ x ≤ l, 0 ≤ t ≤ T .
Plugging (3.1) into (2.7) and arranging it, we have

Dα
t (T (t;α, β))

T (t;α, β)
= γ2D

2β
x (X (x;β))

X (x;β)
= −λ2(β) (3.2)

Note that the value of λ varies based on β. Equation (3.2) produces two fractional
differential equations with respect to time and space. The first fractional differential
equation is obtained by taking the equation on the right hand side of Eq. (3.2).
Hence with boundary conditions (2.8), we have the following problem

D2β
x (X (x;β)) + λ2 (β)X (x;β) = 0 (3.3){

X (−l) = X (l)
X ′ (−l) = X ′ (l)

(3.4)

The solution of eigenvalue problem (3.3)-(3.4) is accomplished by making use of
the Mittag-Lefffer function of the following form:

X (x;β) = Eβ,1(rxβ) (3.5)

Hence the characteristic equation is computed in the following form:

r2 + λ2(β) = 0 (3.6)

Case 1. If λ(β) = 0, the characteristic equation have two coincident roots r1 = r2,
leading to the general solution of the eigenvalue problem (3.3)-(3.4) having the
following form:

X (x;β) = k1
xβ

β
+ k2 (3.7)

Dβ
xX (x, β) = k1Γ(β) (3.8)
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The first boundary condition yields

X (−l) = −k1
lβ

β
+ k2 = k1

lβ

β
+ k2 = X(l)⇒ k1 = 0 (3.9)

which leads to the following solution

X (x;β) = k2 (3.10)

Similarly second boundary condition leads to

Dβ
xX (−l) = 0 = Dβ

xX(l) (3.11)

The representation of the solution is established as

X0 (x) = k2 (3.12)

Case 2. If λ (β) > 0, the Eq. (3.6) have two distinct real roots r1, r2 yielding
the general solution of the problem (3.3)-(3.4) in the following form:

X (x;β) = c1Eβ,1
(
r1x

β
)

+ c2Eβ,1(r2x
β) (3.13)

By making use of the first boundary condition, we have

X (−l) = c1Eβ,1

(
r1(−l)β

)
+c2Eβ,1

(
r2(−l)β

)
= c1Eβ,1

(
r1l

β
)
+c2Eβ,1

(
r2l

β
)

= X(l)

(3.14)

c1

(
Eβ,1

(
r1(−l)β

)
− Eβ,1

(
r1l

β
))

+c2

(
Eβ,1

(
r2(−l)β

)
− Eβ,1

(
r2l

β
))

= 0 (3.15)

Since Eβ,1

(
r1(−l)β

)
−Eβ,1

(
r1l

β
)

and Eβ,1

(
r2(−l)β

)
−Eβ,1

(
r2l

β
)

are linearly

independent the equation (3.15) is satisfied if and only if c1 = 0 = c2 which implies
that X (x;β) = 0 which implies that there is not any solution for λ (β) > 0.

Case 3. If λ (β) < 0, the characteristic equation have two complex roots yielding
the general solution of the problem (3.3)-(3.4) in the following form:

X (x;β) = c1cosβ
(
λ (β)xβ

)
+ c2sinβ(λ(β)xβ) (3.16)

By making use of the first boundary condition we have

X (−l) = c1cosβ
(
λ (β) lβ

)
+ c2sinβ(−λ(β)lβ) = c1cosβ

(
λ (β) lβ

)
+ c2sinβ(λ(β)lβ) = X(l)

(3.17)
which implies that

⇒ 2c2sinβ
(
λ (β) lβ

)
= 0⇒ c2 = 0 (3.18)

Hence the solution becomes

X (x;β) = c1cosβ(λ (β)xβ) (3.19)

Dβ
xX (x, β) = −c1λ (β) sinβ

(
λ (β)xβ

)
(3.20)

Similarly last boundary condition leads to
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Dβ
xX (−l) = −c1λ (β) sinβ

(
−λ (β) lβ

)
= −c1λ (β) sinβ

(
λ (β) lβ

)
= Dβ

xX(l)
(3.21)

⇒ 2c1λ (β) sinβ
(
λ (β) lβ

)
= 0 (3.22)

which implies that

sinβ
(
λ (β) lβ

)
= 0 (3.23)

which yields the following eigenvalues

λn (β) =
wn (β)

lβ
, λ1 (β) < λ2 (β) < λ3 (β) < . . . (3.24)

where wn (β) satisfy the equation sinβ (wn (β)) = 0.
As a result the solution is obtained as follows:

Xn (x;β) = cosβ

(
wn (β)

(x
l

)β)
, n = 1, 2, 3, . . . (3.25)

The second equation in (3.2) for eigenvalue λn(β) yields the fractional differential
equation below:

Dα
t (T (t;α, β))

T (t;α, β)
= −γ2λ2

n (β) (3.26)

which yields the following solution

Tn (t;α, β) = Eα,1

(
−γ2w

2
n (β)

l2β
tα
)
n = 0, 1, 2, 3, . . . (3.27)

The solution for every eigenvalue λn(β) is constructed as

un (x, t;α, β) = Xn (x;β)Tn (t;α, β) = Eα,1

(
−γ2w

2
n (β)

l2β
tα
)

cosβ

(
wn (β)

(x
l

)β)
, n = 0, 1, 2, 3, . . .

(3.28)
which leads to the following general solution

u (x, t;α, β) = A0 +

∞∑
n=1

Ancosβ

(
wn (β)

(x
l

)β)
Eα,1

(
−γ2w

2
n (β)

l2β
tα
)

(3.29)

Note that it satifies boundary condition and fractional differential equation.
The coefficients of general solution are established by taking the following initial

condition into account:

u (x, 0) = f (x) = A0 +

∞∑
n=1

Ancosβ

(
wn (β)

(x
l

)β)
(3.30)

The coefficients An for n = 0, 1, 2, 3, . . . are determined by the help of inner
product (2.10) as follows:
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〈
f (x) , cosβ

(
wk (β)

(x
l

)β) 〉
=

〈
A0, cosβ

(
wk (β)

(x
l

)β) 〉
+

+

∞∑
n=1

An

〈
cosβ

(
wn (β)

(x
l

)β)
, cosβ

(
wk (β)

(x
l

)β) 〉
(3.31)

T−1

(∫
T

[
cosβ

(
wk (β)

(x
l

)β)
f (x)

]
dx

)∣∣∣∣x=l

x=−l
= A0T

−1

(∫
T

[
cosβ

(
wk (β)

(x
l

)β) ]
dx

)∣∣∣∣x=l

x=−l
+

+

∞∑
n=1

AnT
−1

(∫
T

[
cosβ

(
wn (β)

(x
l

)β)
cosβ

(
wk (β)

(x
l

)β) ]
dx

)∣∣∣∣x=l

x=−l
(3.32)

T−1

(∫
cos

(
kπx

l

)
f(x)dx

)∣∣∣∣x=l

x=−l
= A0T

−1

(∫
cos

(
kπx

l

)
dx

)∣∣∣∣x=l

x=−l

+

∞∑
n=1

AnT
−1

(∫
cos
(nπx

l

)
cos

(
kπx

l

)
dx

)∣∣∣∣x=l

x=−l
(3.33)

A0 =
1

2l
T−1

(∫
f(x)dx

)∣∣∣∣x=l

x=−l
(3.34)

An =
1

l
T−1

(∫
f(x)cos

(
kπx

l

)
dx

)∣∣∣∣x=l

x=−l
(3.35)

4. Illustrative Example

In this section, we first consider the following initial periodic boundary value
problem:

ut(x, t) = uxx(x, t){
u (−1, t) = u (1, t)

ux (−1t, t) = ux (1, t)

u (x, 0) = cos(πx) (4.1)

which has the solution in the following form:

u (x, t) = cos(πx) e−π
2t. (4.2)

where −1 ≤ x ≤ 1, 0 ≤ t ≤ T .
Now let the following problem called fractional heat-like problem be taken into

consideration:

Dα
t u (x, t) = D2β

x u (x, t) (4.3){
u (−1, t) = u (1, t)

Dβ
xu (−1t, t) = Dβ

xu (1, t)
(4.4)

u (x, 0) = cos(πx) (4.5)
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where 0 < α < 1, 1 < 2β < 2, −1 ≤ x ≤ 1, 0 ≤ t ≤ T .
The separation of the variables method yields the following equations:

Dα
t (T (t;α, β))

T (t;α, β)
=
D2β
x (X (x;β))

X (x;β)
= −λ2(β) (4.6)

Note that the value of λ varies based on β. Equation (3.2) produces two fractional
differential equations with respect to time and space. The first fractional differential
equation is obtained by taking the equation on the right hand side of Eq. (4.6).
Hence with boundary conditions (4.4), we have the following problem

D2β
x (X (x;β)) + λ2 (β)X (x;β) = 0 (4.7)

{
X (−1) = X (1)

Dβ
xX (−1) = Dβ

xX (1)
(4.8)

The representation of the solution for the eigenvalue problem (4.7)-(4.8) is ob-
tained as

Xn (x;β) = cosβ
(
wn (β)xβ

)
, n = 0, 1, 2, 3, . . . (4.9)

The second eqution in (4.6) for every eigenvalue λn(β) yields the following equa-
tion:

Dα
t (T (t;α, β))

T (t;α, β)
= −λ2

n (β) (4.10)

which has the following solution

Tn (t;α, β) = Eα,1
(
−w2

n (β) tα
)
n = 0, 1, 2, 3, . . . (4.11)

For each eigenvalue λn(β), we obtain the following solution:

un (x, t;α, β) = Eα,1
(
−w2

n (β) tα
)

cosβ
(
wn (β)xβ

)
n = 0, 1, 2, 3, . . . (4.12)

and hence we have the following sum:

u (x, t;α, β) = A0 +

∞∑
n=1

Ancosβ
(
wn (β)xβ

)
Eα,1

(
−w2

n (β) tα
)

(4.13)

Note that the general solution (4.13) satisfy both boundary conditions (4.4) and
the fractional equation (4.3). By making use of the inner product defined in (2.10),
we determine the coefficients An in such a way that the general solution (4.13)
satisfes the initial condition (4.5). Plugging t = 0 in to the general solution (4.13)
and making equal to the initial condition (4.5) we have

u (x, 0) = A0 +

∞∑
n=1

Ancosβ
(
wn (β)xβ

)
(4.14)

The coefficients An for n = 0, 1, 2, 3, . . . are determined by the help of the inner
product as follows:
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A0 =
1

2
T−1

(∫
cos(πx) dx

)∣∣∣∣x=1

x=−1

=
1

2
T−1

(
1

π
sin(πx)

)∣∣∣∣x=1

x=−1

(4.15)

=
1

2

sinβ
(
w1 (β)xβ

)
w1(β)

∣∣∣∣∣
x=1

x=−1

=
1

2w1(β)
[sinβ (w1 (β))− sinβ (−w1 (β))]

= 0

An = T−1

(∫
cos(πx) cos (nπx) dx

)∣∣∣∣x=1

x=−1

(4.16)

For n 6= 1 An = 0 dır. n = 1 we get

A1 = T−1

(∫
cos2(πx) dx

)∣∣∣∣x=1

x=−1

= T−1

(∫ (
1

2
+

cos(2πx)

2

)
dx

)∣∣∣∣x=1

x=−1

(4.17)

= T−1

(
x

2
+

sin(2πx)

4π

)∣∣∣∣x=1

x=−1

=
xβ

2
+
sinβ

(
w2 (β)xβ

)
w4(β)

∣∣∣∣∣
x=1

x=−1

=
1

2
−

(
(−1)

β

2

)
= 1

Thus

u (x, t;α, β) = cosβ
(
w1 (β)xβ

)
Eα,1

(
−w2

1 (β) tα
)

(4.18)

It is important to note that plugging α = β = 1 in to the solution (4.18) gives
the solution (4.2) which confirm the accuracy of the method we apply.

5. Conclusion

In this research, the analytic solution of sequential space-time fractional differ-
ential equation with periodic boundary conditions in one dimension is constructed.
By making use of seperation of variables the solution is formed in the form of a
Fourier series with respect to the eigenfunctions of a corresponding Sturm-Liouville
eigenvalue problem including fractional derivative in Caputo sense.
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