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FRACTIONAL TYPE POISSON EQUATIONS BY RADIAL BASIS

FUNCTIONS KANSA APPROACH

FUAT USTA

Abstract. In this paper we propose a numerical scheme for the solution of
fractional order of Poisson equation in R

2. The new scheme uses the Ra-
dial basis functions (RBFs) method to benefit the desired properties of mesh
free techniques such as no need to generate any mesh and easily applied to
high dimensions. In the numerical solution approach the Kansa’s collocation
method is used to discrete fractional derivative terms with the multiquadric
basis function. The numerical experiments two dimensional cases are presented
and discussed, which conform well with the corresponding exact solutions.

1. Introduction

Poisson equation is one of the most popular elliptic differential equations with
broad utility in theoretical physics, mechanical engineering and electrostatics. How-
ever a number of physical systems could only be modelled by using the non-integer
order of derivatives and integrals. A lot of analytical and numerical methods of such
systems have been proposed in academia such as variation iteration method [9], frac-
tional finite difference method [2],[12], homotopy perturbation method [11],[16] and
Adomian decomposition method [18],[4].

In conjunction with these methods radial basis functions method is one of the
more practical ways of solving fractional order of models. The most significant
property of an RBF technique is that there is no need to generate any mesh so it
called meshfree method. One only requires the pairwise distance between points
for an RBF approximation. Therefore it can be easily applied to high dimensional
problems since the computation of distance in any dimensions is straightforward.
On the other hand in order to solve partial differential equations (PDEs) in [6], [7]
Kansa proposed RBF collocation method which is mesh-free and easy-to-handle in
comparison with the other methods. Not only integer order PDEs [19] but also
Kansa’s approach has been used fractional order of PDEs [3].

This prospective study was designed to investigate the use of radial basis func-
tions methods to solve the fractional Poisson equations via Kansa’s collocation
method. The remaining part of the paper proceeds as follows: the second section
of this paper will review the basic tools of fractional calculus, Poisson equation
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and RBFs. The third section begins by laying out the numerical discretization
formulation and looks at how can be computed the fractional order of RBFs. The
fourth section presents the findings of the research by numerically. The fifth section
concludes this study with some remarks.

2. Preliminaries

2.1. Fractional calculus. Here we review the Riemann-Liouville [15], [14], Caputo
[10] and conformable fractional derivatives [8], [1].

Definition 2.1. The Riemann-Liouville fractional derivative of order α of function

u(t) is described as

α
aDtu(t) =

1

Γ(τ − α)

dτ

dtτ

∫ t

a

(t− ξ)τ−α−1u(ξ)dξ, t > a (2.1)

where τ = ⌈α⌉.

Definition 2.2. The Caputo fractional derivative of order α of function u(t) is

described as

α
aDt

Cu(t) =
1

Γ(τ − α)

∫ t

a

(t− ξ)τ−α−1u(τ)(ξ)dξ, t > a (2.2)

where τ = ⌈α⌉.

Definition 2.3. The conformable fractional derivative of order α of function u(t)
is described as

αDtu(t) = lim
ξ→0

u
(

t+ ξt1−α
)

− u (t)

ξ

provided the limits exits. Note that if u is fully differentiable at t, then the derivative

is αDtu(t) = t1−αu′(t).

2.2. Poisson Equation. The general form of Poisson equation on a finite domain
Ω = {(x, y)|(x, y) ∈ [0, 1]× [0, 1]} is

∇2u(x, y) = f(x, y), (2.3)

where ∇2 is the Laplace operator. In two dimensional Cartesian coordinates the
Poisson equation takes the form

(

∂2

∂x2
+

∂2

∂y2

)

u(x, y) = f(x, y). (2.4)

In the case of f(x, y) = 0, Poisson equation convert to Laplace’s equation. Here we
begin by briefly reviewing the fractional Poisson equation. The fractional order of
Poisson equation can be given as follows:

∇α,βu(x, y) =

(

∂α

∂xα
+

∂β

∂yβ

)

u(x, y) = f(x, y), 1 < α, β 6 2, (2.5)

with Dirichlet boundary conditions. In order to provide mesh-free numerical solu-
tion of equation (4.3), we will use the radial basis function method which will be
summarized below.
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2.3. Radial basis function method. One of the properly approach to solving
PDE is radial basis functions (RBFs). The main idea of the RBFs is to calculate
distance to any fixed center points xi with the form ϕ(‖x − xi‖2). Additionally
RBF may also have scaling parameter called shape parameter ε. This can be done
in the manner that ϕ(r) is replaced by ϕ(εr). Generally shape parameter have been
chosen arbitrarily because there are no exact consequence about how to choose best
shape parameter. Some of the RBFs are listed in Table 1.

RBFs ϕ(r)

Multiquadric (MQ)
√
1 + r2

Inverse Multiquadric (IMQ) 1√
1+r2

Inverse Quadratic (IQ) 1
1+r2

Gaussian (GA) e−r2

Table 1. Radial basis functions

The main advantageous of RBF technique is that it does not require any mesh
hence it called mesh-free method. Therefore the RBF interpolation can be represent
as a linear combination of RBFs as follows:

s =

N
∑

i=1

aiϕ(‖x− xi‖2) (2.6)

where the ai’s the coefficients which are usually calculated by collocation technique.
Some of the greatest advantages of RBF interpolation method lies in its practicality
in almost any dimension and their fast convergence to the approximated target
function.

3. Meshfree numerical approximation method

In this section we present a numerical scheme to solve fractional elliptic partial
differential equation via non-symmetric method with radial basis functions. Let
take the Poisson equation of the form

∇α,βu(x, y) = f(x, y), (x, y) in Ω (3.1)

u(x, y) = g(x, y), (x, y) on ∂Ω (3.2)

with Dirichlet boundary conditions where Ω ∈ R
2. Thus we are trying to compute

u while f and g are fixed. We can now use Kansa’s RBF collocation method [6],
[7]. We build in a simple one-dimensional model. Let propose an approximation
solution u of the form

u =

N
∑

i=1

aiϕ(‖x− xi‖2) (3.3)

where X = x1, x2, . . . , xN are the set of nodes in Ω. Then the collocation matrix
which constructed by using Poisson equation (3.1) and boundary condition (3.2) to
the collocation points X will be of the form

[A] =

(

∇α,β [ϕ]
ϕ

)

, (3.4)
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where the two blocks are constituted of entries:

∇α,β [ϕ]i,j = ∇α,βϕ(‖xi − xj‖2), xi ∈ I, xj ∈ X (3.5)

ϕi,j = ϕ(‖xi − xj‖2), xi ∈ B, xj ∈ X (3.6)

where I and B represent a set of interior and a set of boundary points of the set of
X collocation points respectively (i.e., X = I ∪B). The problem described above
is called well-posed (or correctly-set) if the linear matrix system Aa = F, where
F is composed of f = [f(xi)], xi ∈ I, and g = [g(xi)], xi ∈ B, has a unique
solution. Since the outstanding properties of multiquadrics in terms of certainty
and complexity Kansa particularly suggest to use it in (3.3).

The main difference between numerical solution of integer and non-integer or-
der of elliptic PDE’s is calculation of RBF derivatives. In other words one need
to compute the Riemann-Liouville, Caputo or conformable fractional derivatives
of any radial basis functions, say multiquadric. In [13], Riemann-Liouville and
Caputo fractional derivative versions of some common radial basis functions have
been computed explicitly. In addition to this, the conformable fractional versions
of radial basis function have been presented in [17]. For instance Riemann-Liouville
and Caputo fractional derivative of multiquadric basis function can be described as
follows for a 6= 0 and t > a:

α
aDt

√

1 + t2 =

∞
∑

n=0

(−1)nC2n
n

(1− 2n)4n
(2n)!(x − a)−α

2n
∑

k=0

a2n−k(x− a)k

(2n− k)!Γ(k − α+ 1)

and

α
aDt

C

√

1 + t2 =

∞
∑

n=0

(−1)nC2n
n

(1− 2n)4n
(2n)!aτ (x−a)τ−α

2n−τ
∑

k=0

a2n−k(x− a)k

(2n− τ − k)!Γ(τ + k − α+ 1)

respectively. Another example is conformable fractional derivative of multiquadric
which given below

α
D

√

1 + t2 = t1−α
∞
∑

n=0

(−1)nC2n
n 2n

(1− 2n)4n
t2n−1. (3.7)

Then these results are used straight-forwardly in the collocation radial basis func-
tions for solving fractional PDEs. Although there appears infinite sums in the
previous formulas, one can truncate the terms once they are smaller than the ma-
chine precision.

4. Numerical experiments

Now in order to verify proposed method in the previous sections we will give
some numerical experiments results of some fractional Poisson equations. In these
experiments we use the multiquadric basis function and take the ε = 4.

4.1. Experiment 1. Let consider the Riemann-Liouville fractional Poisson equa-
tion
(

∂4/3

∂x4/3
+

∂3/2

∂y3/2

)

u(x, y) =
(1080x1/3 − 1800x−2/3)y(y − 1)

360Γ(2/3)
+
(4
√
y − y−1/2)x(x − 1)√

π
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on a finite domain (x, y) ∈ Ω = [0, 1]2 with the boundary condition

u(x, y) = 0 (x, y) ∈ ∂Ω. (4.1)

The exact solution is given by u(x, y) = x(1 − x)y(1− y).
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Figure 1. Approximate solution of target function u(x, y) (left)
and maximum error for RBF solution (right).

4.2. Experiment 2. Let consider the Caputo fractional Poisson equation [5]
(

∂2

∂x2
+

∂3/2

∂y3/2

)

u(x, y) = −4 sin(2πx)π2y(y−1/2)(y−1)+
4
√
y sin(πx) cos(πx)(4y − 3)√

π

on a finite domain (x, y) ∈ Ω = [0, 1]2 with the boundary condition

u(x, y) = 0 (x, y) ∈ ∂Ω. (4.2)

The exact solution is given by u(x, y) = sin(2πx)y(y − 1/2)(y − 1).

4.3. Experiment 3. Let consider the Conformable fractional Poisson equation
(

∂3/2

∂x3/2
+

∂4/3

∂y4/3

)

u(x, y) = π cos (πy/2)

(

cos(πx)

4
√
x

+ π 4
√
x sin(πx)

)

− π sin(πx)

2

(

sin(πy/2)

3 3
√
y

+
π 3

√

y2 cos(πy/2)

2

)

.

on a finite domain (x, y) ∈ Ω = [0, 1]2 with the boundary condition

u(x, y) = sin(πx) (x, y) ∈ Ω1,

u(x, y) = 0 (x, y) ∈ Ω2.

where Ω1 = {(x, y)|x ∈ [0, 1], y = 0} and Ω2 = ∂Ω\Ω1. The exact solution is given
by u(x, y) = sin(πx) cos(πy/2).

In Figure 1, 2 and 3, we present the multiquadric solution of Riemann-Louville,
Caputo and conformable Poisson equations along with its maximum error respec-
tively. These figures show that the RBF method has been successfully applied to
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Figure 2. Approximate solution of target function u(x, y) (left)
and maximum error for RBF solution (right).
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Figure 3. Approximate solution of target function u(x, y) (left)
and maximum error for RBF solution (right).

the numerical solution problem of fractional order Poisson equation in R
2 with en-

couraging performance. These results confirm the superior performance of RBF
methods for numerical solution of fractional PDEs.

5. Concluding remark

In this investigation, the aim was to present a numerical scheme to solve frac-
tional order of PDEs via collocation technique. The methods used for solution of
Poisson equation may be applied to other PDEs elsewhere in the world. Numerical
experiments confirm the efficiency and high accuracy of this technique. Because of
RBFs multidimensional property future research should therefore concentrate on
the investigation of numerical solution of high dimensional PDEs.
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