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DEFERRED CESARO MEAN AND DEFERRED STATISTICAL
CONVERGENCE OF DOUBLE SEQUENCES

ILHAN DAGADUR, SEYDA SEZGEK

ABSTRACT. In this paper, the concepts of deferred Cesaro mean and deferred
statistical convergence of double sequences are defined and some important
results are obtained. Particularly in Section 3, we consider the case 8(n)
A(n) = Xn — 1), y(m) = p(m) — p(m — 1) for deferred Cesaro mean Dg ,
where A = (A(n)) and p = (u(m)) are strictly increasing sequences of positive
integers with A(0) = 0 and p(0) = 0. Finally, some inclusion results between
Cesaro submethod C} ,, and deferred Cesaro mean Dg - for double sequences
are obtained.

1. INTRODUCTION

The concept of statistical convergence was first introduced by Fast [6] and also
independently by Buck [5] and Schoenberg [21] for real or complex sequences. Fur-
ther, this concept was studied by Salat[20], Fridy [7], Kiiciikaslan [II] and many
others. Some equivalence results for Cesaro submethods have been studied by Goff-
man and Petersen [8], Armitage and Maddox [2] and Osikiewicz [16].

In 1932, Agnew [I] defined the deferred Cesaro mean D, , of the sequence = =
(zx) by

1 q(n)

)=o) 2

k=p(n)+1

(Dp,qT)n =

where {p(n)} and {q(n)} are sequences of positive natural numbers satisfying
p(n) < ¢(n) and lim ¢(n) = oco.
n—oo

In [4], the first study on double sequences was examined by Bromwich. And than
it was investigated by many authors such as Hardy [10], Moricz [12], Tripathy [24],
Basarir and Sonalcan [3]. The notion of regular convergence for double sequences
was defined by Hardy [10]. After that both the theory of topological double se-
quence spaces and the theory of summability of double sequences were studied by
Zeltser [25]. The statistical and Cauchy convergence for double sequences were ex-
amined by Mursaleen and Edely [I3] and Tripathy [23] in recent years. Many recent
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improvements containing the summability by four dimensional matrices might be
found in [I7].

As a continuation of these works, we investigate deferred Cesaro mean and de-
ferred statistical convergence for double sequences by using deferred double natural
density of the subset of natural numbers and give some certain results for deferred
Cesaro mean of double sequences. We recall some notations and basic definitions
used in this paper.

By a convergence of double sequence we mean a convergence in Pringsheim’s
sense [I8]. A double sequence & = () is said to be convergent in the Pringsheim’s
sense if for every £ > 0 there exists an ng = ng(e) such that |z, — L] < & whenever
n,m > ng [18]. In this case, we write P — lim,, ;—00 Tnm = L.

A double sequence © = () is bounded if there exist a positive number M
such that |2,,,| < M holds for all (n,m) € Nx N=N2, ie.,

1 % [(00,2):= SUP |Znm| < 00.
n,m
We will denote the set of all bounded double sequences by M,. Note that, in
contrast to the case for single sequences, a convergent double sequence need not be
bounded.
In [13], let K C N? be a two-dimensional set of positive integers and let

K(n,m) :={(j,k) € K : (j,k) < (n,m)}

where (7,k) < (n,m) means that j < n and k¥ < m. Then, the lower asymptoic
density of the set K C N? is defined as
K
95(K) := liminf M

n,m—oo mn

The vertical bars above indicate the cardinality of the set K(n,m). In case the
|K (n,m)]|

prores ) has a limit in Pringsheim’s sense then we say that K has a

sequence (
double natural density and is defined as
K
J2(K):= lim M
n,m— 00 mn
Following Mursaleen [13] we say that a double sequence & = (x,,,,,) is statistically
convergent to the number L if for each € > 0,

1
i (G k)G < k< m e L2 e =0,
holds. In this case, we write sto— limy, ;00 Znm = L and we denote the set of all
double statistically convergent sequences by sts.
Let A = (a}f") be a four dimensional summability matrix and z = (2,m,) be a
double sequence. If [Az] := {(AZ)nm } is convergent to L in Pringsheim sense then
we say (Znm) is A—summable to L where

(AZ)pm = Za%"xjk for all n,m e N
Jik
A said to be RH-regular if it maps every bounded P-convergent sequence into a
P-convergent sequence with the same P-limit [9].
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Recall that four dimensional Cesaro matrix C1 = (") is defined by

nm’ )
0, otherwise.

cnm L j<nandk<m
Cik =

Let the index sequences A(n) and p(m) be strictly increasing single valued se-
quences of positive integers and & = (x,.,,) be a double sequence. Then, the Cesaro
submethod C) , := (Cx,1,1) is defined to be

A(n),pu(m)
(CA,Mx)nm T NN (o Ljk

Neoutm) 2
where Z;\("l)k“(T) Tjp = ZA(R) Zk ") 2. Since {(Cx,u2)nm} is a subsequence of

{(C12)nm}, then the method C,u is RH-regular for any A and p [22].

2. MAIN RESULTS

In this section, the concepts of deferred Cesaro mean Dg , and deferred statistical
convergence for a double sequence x = () are defined, and several theorems on
this subject are given.

Throughout this paper 8(n) = g(n) — p(n), v(m) = r(m) — t(m) are represented
by g and -+, respectively.

Definition 1. Let © = (z1;) be a double sequence and 8(n) = ¢q(n) — p(n),
v(m) = r(m) —t(m). Then deferred Cesaro mean Dg ., of the double sequence z is
defined by

1 q(n) (
(Dpy@)nm = B(n) () > Z

k=p(n)+1Il=t(m)+1
q(n), v(m)

1
= ——— > o,
B m) | 2=
I=t(m)+1

where {p(n)}, {¢(n)}, {r(m)} and {t(m)} are sequences of nonnegative integers
satisfying the conditions p(n) < ¢(n), t(m) < r(m) and lim, ,, q(n) = oo,
limy;, s 00 (M) = 0.

We note that the method Dg  is clearly regular for any choice of {p(n)}, {q(n)},
{r(m)} and {t(m)}.

Definition 2. Let © = (zy;) be a double sequence and L be a real number.
Then, the double sequence z is said to be Dg ,-summable to L if

1 q(n), r(m)

lim —— (30 — L) = 0
A B A 2
I=t(m)+1

holds and it is denoted by (Dg ) — limy, m—o0 Tnm = L or (limy, 1m—00 (Dg4T)nm =
L).
Definition 3. Let K be a subset of N2 and denote the set

{(k,0) :p(n) <k < q(n), t(m) <l <r(m), (k, 1) € K}
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by Kg(n,m). The deferred double natural density of K is defined by
1
6@ (K):= lim ——|K n, m
Dﬁ,'v( ) n,M—00 6(n)7(m)‘ 5’7( )|
whenever the limit exists.
Also, because of 5( ) (K ) does not exist for all K C N2, it is convenient to use
upper deferred asymptotlc density of K, defining by
5*(2)

_ ‘Kﬂ (n>m)|
Dy, (K) = limsup Zg0 s,

It is clear that, for the function d; ﬁ) the following axioms are hold for any K C N2:
i) if 5(;; (K) exists, then 5(2) = 5]*3(? (K),
1) 6%2; (K) #0if and only 1f 6*( ) ( ) > 0 and

i41) The function 53 DB ( ) is monotone increasing.
el

Definition 4. A double sequence z = (xy;) is said to be deferred statistically
convergent to L € R if for every € > 0,

LU D p) £ 1<k < g(n), Hm) +1 <1< r(m), fow — L[>}
n,m—00 B(n) (m)
and it is denoted by (Dg ) Sta — limy, ;m—00 Tnm = L.
Using the above definitions, the next result follows immediately.

Theorem 2.1. With {p(n)}, {g(n)}, {r(m)} and {t(m)} as in Definition 1, if
(Dg,y) — limy, 1m—y00 Tnm = L then,

(Dg,y) sty — nrlrllrgoo Typm = L.

Proof. We assume that (Dg ) — limy, ;m—00 nm = L. Then for an arbitrary ¢ > 0
we have

1 q(n), r(m)
- I =
5 2 Foe 1

k=p(n)+1
I=t(m)+1
1 q(n), r(m) q(n,zr:(m)
= T~ + |z — L >
B v(m) [ St rmpme
I=t(m)+1 I=t(m)+1
|zpi—L|>e  |zm—L|<e
1 q(n)if(m)
> |zi — L| >
B0 ), 2=
I=t(m)+1
|:L’kl*L‘2€
s> NED:pn) +1<k < q(n), tim)+1<U<r(m), Jom — L] > €}
- B(n) v(m) '

Then, by taking limits when n,m — oo we obtained
f MO0 p) +1 <k < g(n), tom) +1 <1< r(m), ow — LI 2 e}
n,m—00 B(n) r(m)
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The proof is completed. O

Our next result is obtained from Theorem [2.1] easily.
Corollary 2.2. If zp,, — L(n,m — 00), then (Dg.) sta — limy, m—soo Tnm = L.
Remark. Generally, the converse of Theorem[2.1] and Corollary[2.3 are not true.

For example; let g(n) and r(m) are strictly increasing sequences of positive in-
tegers and hy # 0, ho # 0 are arbitrary but fixed natural numbers. Let us define a

double sequence x = () for n,m =1,2,... as
= { R V) = b < b < 1Al [Vrem) = ke << 170
, otherwise.

If we consider (Dg,,)-method for a sequence p(n) and t(m) such that the condi-
tion

0 <p(n) <[vqn)] —h1 and 0 < t(m) < [\/r(m)] — ha

holds. So, for an arbitrary € > 0, we have

iy D) () < b < g(n), tm) <1< r(m), |aw — 1] > £}
oo 5 ~(m)

_ lim _ by 0
nm—oo B(n) y(m)

It means that, (Dg) sta — limy m—o0 Tnm = L. On the other hand, we have

' 1 q(n), r(m)
oA ) 2,2 e
I=t(m)+1
T (Y A G ) N
- n,wllrgoo 6(71) ’y(m) -

Given that, since hy # 0 and hy # 0, then (Dg) — limy m—yoo Tnm # L is
obtained.

Theorem 2.3. Let a bounded double sequence x = (Tpm). If (Dg,y) sto—liMy, m—soo Trm =
L, then (Dg.) — limy m—s00 Tnm = L.

Proof. We assume that © = (2p,,) € M, and (Dg ) sty — limy, 100 Tnm = L. In
this case, there exists a real number M > 0 such that for all n,m € N we have

|Zpm — L| < M.
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For an arbitrary € > 0, we have

q(n), r(m)

1
B 2l H=

k=p(n)+1
I=t(m)+1

q(n), r(m)  q(n), r(m)

= W Z + Z ‘xkl7L|:

k=p(n)+1  k=p(n)+1
I=t(m)+1 I=t(m)+1
|z —L|>e |z —Ll<e

1 Q("%ZT(m) q(n),zr(m)
< — M 1+4¢ 1] <
ﬂ(n) V(m) k=p(n)+1 k=p(n)+1
I=t(m)+1 l=t(m)+1
|$klfL|ZE |$klfL‘<6
< yEDp) <k <q(n), tm) <l<r(m), |ou L] 2 €}l] |
B(n) ~(m)
{(k,0) : p(n) <k < q(n), t(m) <l <r(m), |zp — L] <e}
+ . .
B(n) ~(m)
If
L 0D p(n) < k< g, t0m) < U< r(m), o — L2 e}]

o B(n) ~(m)
takes the limit when n,m — oo, then we have

1 q(n), r(m)
lim —— |zge — L| =0
B B A 2
I=t(m)+1
and the proof is completed. (I

Now, let us give following known Lemma that we will use it to prove of the
Theorem 2.5

Lemma 2.4. Let (anm) be a sequence of positive integers and (ky,), (I,) be increas-
ing sequences of positive integers. If limy, m—yoo Gnm = a € R, thenlim,, y,—yo0 Gk, 1, =
a.

Proof. Let (ag,i1,,) be a subsequence of (anm,) and let € > 0 be given. Since
limy, 1m—yo0 Gnm = a, there exists N = N (¢) € N such that |an, —a| < € for
all n,m > N. Since (ky), (l,,) are increasing sequences of positive integers, we
have k, > n, l,, > m, Yn,m € N. Hence, if n,mm > N, then k,, [, > N and
lak,1,, —a| < e. That is, limy, m—co Gk, 1,, = G- O

Theorem 2.5. Let x = (Zpm) be a real valued double sequence and L € R. If
sto — limy, m—yo0 Tnm = L, then (Dg ) ste — limy, 1m—y00 Trm = L.

Proof. Since & = (x,,,,) is statistical convergent to L, then for Ve > 0,

1
lim 7|{(k7 l) < (TL, m) : \xkl - L| > 5}| =0.

n,m—o00 N, M
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By taking a,m = ninH:(k l) ( ) : |xl€l_L‘ > 5}‘ and k,, = Q(n)a b = T(m)
in the Lemma [2.4] we see that the following sequence converges to zero
{Ik <q(n), 1<r(m): |z — L] > sI}

q(n) r(m)

ie.,

n'}rlL—N)oq() r(m )H q(n), 1 <r(m):|zp — L| > e} =0.

In this case, the inclusion
{p(n) < k<q(n), tm) <l <r(m):|en—L| >¢c}
C {k<qn), l<r(m): |z —L| > ¢}
and the inequality
{p(n) < k<
< [k
hold for sequences p(n) < q(n), t(m) < r(m), ¥n,m € N. Hence, we have
{p(n) <k <q(n), tim) <l <r(m):|zn —L| > e}

q(n), t(m) <l <r(m): |oy — L| > e}
<q(n), L <r(m):|ey — L] > e}

lim

n,m—>00 B(n) ~v(m)
oy @) r(m) [{k<q(n), L<r(m): |z — L] 2 €}
= nm—oo B(n) y(m) q(n) r(m)
< lm q(n) r(m) {k <q(n), I <r(m):|ew — L] > €}
= mseo tm) _ p(n) | p(n) t(m)
meeg(n) r(m)(1 = Ty~ Gy F Gy eom)) a(n) r(m)
< lim 1 [{k < q(n), I <r(m): |z — L] > €}
= —tm) _ p(n) | p(n) ((m) :
n,m— 00 (1 ) ) ) r(m)) Q(n) ’l"(m)
Since
lim inf L >0
e tm) _ p(n) , p(n) t(m)
M (L = Sy~ gty gt wm))
and
i < a(n), U< r(m) |z — L[ > e}| _
n,m—>00 q(n) r(m) ’
we can see (Dg ) sto — limy, m—so0 Trm = L. O

Remark. The converse of Theorem[2.5 is not true.

For instance; if we define a sequence as

1 1
o %, n and m odd,
‘rnm A n m
—am, n or m even

and consider p(n) = 2n, q(n) = 4n, t(m) = 2m, r(m) = 4m. Then,

(Dgn, 2m) — hm Tnm — 0
n,m—oo
By Theorem 2.5 we get
(Dgn’ 2m) Stg — hm Tm = 0

n,m—oo
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But, for all € > 0,
k< [ <m: |z —0| >
h |{ _TL, — | kl O‘ —5}‘ é

n,m—0o0 nm

0

ie., sto — limy, m—soc Tnm # 0.

Corollary 2.6. Under the conditions of Theorem[2.5, let q(n), r(m) are sequences
of positive integers such that g(n) < n, r(m) < m, for all n,m € N. Then sty —
limy, 1m—y00 Tnm = L, implies (Dg.) sto — limy, m—soo Tnm = L .

Proof. Since g(n) <mn, r(m) < m, for all n,m € N, the following inclusion

{p(n) < Ek<gqn), t(m)<l<r(m):|zw—L|>e}
C {k<n,l<m:|zp —L|>¢}

and the inequality

{p(n) < k<q(n), ttm) <l <r(m):|zw —L| > e}
< Hk<n, l<m:|zy — L] > e}

hold. If we take limit when n,m — oo, we have

H{p(n) <k < qg(n), ttm) <I<r(m): |zp — L] > e}

lim
n,m—o0 pBn) v(m)
< lim nm [{k<n,l<m:|zy— Ll >c}
= nm—oo B(n) y(m) nm
< lim nm |{k§nvl§m|xkl_L|25}|
MR LTI e rcr e
< lm 1 Hk <n, l<m: |z — L| > e}
T ommeeo | (1 — t(m) _ p(n) | p(n) t(m)) nm ’
r(m)  q(n) ' q(n) r(m)
Since
1
lim inf >0

At e ), e i)
7 (L= )~ atm) T atn) rm))

and then we have

< < : — >
[ e Y 7 0 T

n,m— oo nm

This gives that (Dg) sta — limy, m— 00 Tnm = L. O

Theorem 2.7. Let x = (znm) be a double sequence, q(n) = n, r(m) = m for
alln,m € N and let {p(n)}, {t(m)} be arbitrary sequences. Then, (Dg) sta —
limy, pm—00 Tnm = L if and only if sty —limy, 100 Tnm = L.

Proof. Necessary: Let q(n) =mn, r(m)=m for all n,m € N and {p(n)}, {t(m)}
be arbitrary two sequences are given. We assume that (Dg ) sto—lim, m—c0 Tnm =
L. We shall apply the same technique given in [I]. We define the sequences as

Pn = n(l) > P = n(2) > Pp = n(?’) > ...

tym = m(l) >t = m(2) > o) = m(g) > ...

m(1



126 I. DAGADUR, S. SEZGEK

for all n,m € N. The set {1 <k <n, 1 <l<m: |xgy — L| > e} can be written as
follows

{kzgn 1 <m: |l‘kl—L|>€}
= {kﬁn() l<m |xkl L|Z€}

U{n(l) <k <n, mM <1 <m: |z — L 25}
{(1)<k<nl<m() |zr — |2€}
U{kgn(l), mM <1 <m: |xg — L 25}.
Hence, the sets can be written as follows respectively:
{k <nM, 1 <m®: |k — L| > E}
— {k <n® 1< m® . |xg — L| > E}
U {n@) <k< n(l), m® <1 <m® . |xg — L| > E}
U{n(2 <k<nM 1<m®: |z — L 25}
{r<

E<n® m® <1 <m® :|xkl—L\26},

{n(1<k:<n I <m :|xkl—L|2€}
{n(1<k<nl<m :|xkl—L|25}
@]

{(1)<k<nm(2)<l<m |zp — |25}

and

1 1)<l<m |£Z}klfL|Z€}

| /\

r—’\ﬂ/—/\ﬂ

n? (1)<l<m |Z‘kl—L|ZS}

U{ W <ck<n® m®<i<m: |mkl—L|2£}.
And the set {1 <k < n®, 1<1<m®: |zy — L] > £} can be written as
{k < n(2), 1 <m® . |k — L| > 6}
- {kgn 1<m® gy — L|25}
U{n(B) <k< n(2),m(3) < 1<m®? ;. |k — L] > 5}

E<n® m® < 1<m® . |xg — L| > 5}.

X



DEFERRED STATISTICAL CONVERGENCE OF DOUBLE SEQUENCES 127
Generally, the set {1 <k < nm=b 1 <1 <mh2=Y " |z — L| > e} is written
{1 <k<nMm=D 1 << mhD, |xg — L| > 5}
= {k < n(hl), 1 <mh) . |xg — L] > 5}
U {n(hl) <k< n(hrl), mh2) < | < mhe—b . |xg — L] > 5}
U {n(h’l) <k<nm=D 1< m(h2) . |z — L| > 5}
U {k < n(hl), mh2) < | < mh2=1) . |k — L] > 5}

where n(t) > 1, nM+) = 0 and m*2) > 1, mh2+1) = (0 are hold for fixed
h1,ho > 0 positive integers. Therefore,

1
%Hkgn, I1<m: |zg —L| > e}

(h141,ha+1) An® Am) |{n(i+1) <k<n®, mUtD) <1 <ml), |z — L| > €}|

nm An(@) Am)

(4,)=(0,0)

is obtained, where An® = n(d — R0+ and Am©) = ml) — mE+D . Moreover,
since (Dgﬁ) sty — limy, ;m— 00 Tnm = L, the sequence

’{n(“‘l) <k<n® mUtD) <1 <ml) . |ay — L] > €}| 51
An@ Am) ( ’ )

is convergent to zero for all 4, j € N. If the matrix (bymgi) is defined as

n m Lt

— A AmD) L i41) < () Ut < ] < m0), i,j=1,2
e , otherwise.

then the statistical convergence of the sequence x = (xy;) is equivalent to the
convergence of transform under the matrix (bymk) of the sequence (2.1) . Since
the matrix (bymki) is regular,

1
lim —{k<n, I<m: |zw—L|>e}|=0

n,m—o00 NM

is obtained. So, the proof of theorem is completed. O

Corollary 2.8. Let x = (zpm) be a double sequence, {q(n)} and {r (m)} is equal
to almost all positive integers. Then, (Dg ) sto —lim, m—oo Tnm = L for arbitrary
sequences {p (n)}, {t(m)} implies sto — limy, m—00 Trm = L.

Theorem 2.9. Let © = (znm) be a double sequence, {q(n)} and {r (m)} be se-
quences of positive integers with p (n) =n —1, t(m) =m — 1. In order that (Dg )
sty — limy, ;m—y00 Tnm = L implies sty — limy, py—yo0 Tnm = L, it is necessary and
sufficient that the sequences {q(n) —n} and {r (m) — m} be bounded.

Proof. Necessary: Let (Dg.) sto—limy, m—y00 Tnm = L implies sto—lim,, m—yo0 Tnm =
L and suppose that {g(n) — n} and {r(m) — m} are not bounded.
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Let ny = 1; let ny be the smallest integer n for which g (n) —n > ¢ (ny) —nq; let
n3 be the smallest integer n for which g (n) —n > g (n2) — n2. In general let ny41
be the smallest integer n for which ¢ (n) —n > ¢ (nes) — no. Then,

l=n1<nya<ng<....

Similarly, Let m; = 1; let mq be the smallest integer m for which r (m) — m >
r (m1) — mq; let mg be the smallest integer m for which r (m) —m > r (mg) — ma
In general let mg41 be the smallest integer m for which r (m) —m > r (mg) — mg.
Then,

l=mi <me<ms<....

We find that we can set

1"((]7’1/Z ij) ZQm ij7 Z).] = 1727"'

and choose the remaining elements of a sequence

{z (nm)} = {2nm}

so that the sequence {@y, } is summable (Dg ) to L, i.e,(Dg ) sta—limy m—o0 Trm =
L. But {2, } cannot be summable (C,1,1) since the condition

1
lim —{{k<n, l<m: |z —L| >c}| #0.

n,m—00 MM

This contradicts the hypothesis. Therefore, the sequences {¢q (n) — n} and {r (m) — m}
are bounded.

Sufficient: Since the sequences {¢q (n) —n} and {r (m) — m} are bounded, there
exists 3Ly, Ly € R such that ¢ (n) —n = Ly and r (m) — m = Ly for all n,m € N.
Hence, {¢ (n)} and {r (m)} is equal to almost all positive integers. If Corollary
is considered, the proof is completed. O

Theorem 2.10. Let x = (zp,) be a double sequence. In order that (Dg) sta —
limy, 1m—y00 Tnm = L tmplies sto — limy, ;o0 Tnm = L where p(n) =n —1, t(m) =
m —1 and
hi —1, nzhi,izl,Q,...
o) ={ Mo

n, otherwise,

L 8j+1—1, m:S]‘,j:LQ,...
r(m) = { m, otherwise.

{hn},{sm} being increasing sequences of integers for which h, > n, sy > m, it is
necessary and sufficient that the sequences {@} and {M} be bounded.

m

Proof. Necessary: Let (Dg.) sta — limy, 1m—yo0 Tnm = L. Corresponding to each
index (n,m), let ¢ =i(n), j = j(m) be such that h; < n < hjpq and s; < m <
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sj+1. Then, the equality
1
nm

1
= %Hkﬁhlfl, 1<s1—1: |z —L| > e}

Kk <n, l<m: |z — L| > e}

1
+7‘{h1§k§h2—1, l§81—1: |£Ckl—L|2€}|
nm
1
+—Hk<hi =1, 51 <Il<s9—1: |z — L| > e}
nm
1
+7‘{h1§k§h2—1, 81§l§82—12 |1‘kl—L‘ZE}‘
nm

1
+"'+7‘{hi§/€§hi+1—1, Sj§l§8j+1—1i ‘LL’]@[—L|ZE}|
nm

1
nm

1 1
= — k<L, I<1: |am—L|>e}|+—[{1<k<2 1<1: |z —L| > e}
nm nm

Hn+1<k<hipi—1, m+1<1<s;41—1: |z — L| > e}

1 1
+7|{k‘§1,1<l§22‘xkl—L|Z€}|+7|{l<k§2,1<l§22|£I,'kl—L|2€}|
nm nm
+...
+(h2—h1)(52— 51)

nm
{h1—1<k<hy—1, 81 —-1<1<s93—1: |zpy— L| > e}

o

(h2 — h1) (s2 — s1)
_|_...
+(hi+1 — hi) (sj+1 = s55)

nm
X|{hi_]—<k§hi+1_]—7 Sj—1<l§8j+1—11 |£Ckl—L|2€}|

(Rit1 = hi) (sj+1 — s5)
1
——fn+l<k<n+4+2 m+1<Ii<m+2: |zy—L|>e}
nm

1
—'-'—%|{hi+1—l<k§hi+17 Sj+1—1<l§8j+12 |.’L‘kl—L‘ZE}‘

is hold. Therefore, statistical convergence of the sequence © = () is equavalent
to the convergence of transform under the matrix

(hiv1—hi) (sj+1—5;) hi —1<k< hi+1 -1,
bnmkl = nm ’ 8j71<l§$j+171, t,g=1,2,...
nm, otherwise

of the sequence
{|{h11<k§h1+11, Sj*1<l§8j+1713 $k1L|Z€}|}
(hit1 = hi) (sj41 = 55)

The transform satisfies the conditions of regularity when and only when the se-

quences
2hi+17’n*2 and 25j+17m72
n m
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are bounded for all (n,m) i.e., when and only when the sequences {%} and

{%} are bounded for all (n,m) and therefore, when and only when the sequences
{%")} and {%} are bounded for all (n,m). O

3. SOME INCLUSION RESULTS FOR CESARO SUBMETHODS

Let A = (AM(n)) and p = (u(m)) are strictly increasing sequences of positive
integers such that A(0) = 0 and p(0) = 0. Then, Dg ,-statistically convergence is
defined as D, ,-statistically convergence taking

q(n) = A(n), p(n) = A(n—1), r(m) = p(m) and t(m) = p(m —1).

It is denoted by (D) ) sta.
A double sequence = = (z,) is said to be A-statistically convergent to L, written

(A) sta — limy, m—soo Tnm = L [15], if 61(42)(K5) = 0 for every € > 0, where
K.o:={k<n, l<m: |z —L| >¢}.

We examine the concept of C ,-statistically convergence and its relations to D) ,-
statistically convergence. Now, we define C} ,-statistically convergence, note that
it A=C) ,, then (Cy ) sta — limp ;oo Tnm = L if for every € > 0,

1 A(n),pu(m)
- lim XK. (kv l)
nntsoe () | 4,
1
= lm o |{k < A(n), 1< pu(m) : oy — L] > <} = 0.

o0 A(n)(m)

The following theorem gives a relation between C'y ,-statistically convergence and
D) ,-statistically convergence.

Theorem 3.1. Let A = (A(n)) and p = (u(m)) are sequences strictly increasing of
positive integers such that A(0) =0 and p(0) = 0. If (Dy ) sta —limp m—soo Trm =
L, then (Ch,,) sta — limy, m—o00 Tnm = L.
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Proof. We assume that (Dy ) sto —lim,, y—00 Tnm = L. For arbitrary € > 0,

1
(Ons)om = S0y )
(A1) = A(0)) (u(1) — p(0)) HA(0) <k < A(1), p(0) <1< p(1): |azp — L| > e}

{k < An), 1< p(m): |z —L| = e}

(
A(n) p(m) (A1) = A0)) (u(1) = p(0))

ANR) (1) = a(0)) [{ACK 1 D) <k AR, 0) <L) o =L >
A(n) () AAR) (o) = (0))

(A1) = A0)) Ap(d) [AO) <k < A1), i = 1) <1< D)+ Jona — L] = )]
(1) = A©)) Anu(l

ANK) Ap(D) {Ak = 1) <k < AK), pl=1) <1< (D) : Jawg — L] > £}
A am) ANR) Aa(0)

AAR) Ap(m) A = 1) < k < A@m)julm = 1) < U< palm) : |y — L] > <}
A plm) AN(n) Ap(m)

+ o+ o+ o+ o+ o+ o+t
=
2
=
2

is obtained, where AA(n) = A(n) — A(n — 1) and Au(m) = p(m) — p(m —1). If we
say

1

DS\l = T30 A

{A(R=1) < i < AR), pu(1=1) < j < p(l) : ley—L] > e},

we can obtain

(CA,,LL:E)nm
(A1) = A(0)) (u(1) = u(0)) (A2) = A1) (u(1) — (0
Aw) u(m) (DS + Nn) 1m0 (DS )2
(A1) = A(0) (u(2) = p(1)) AX(n) Ap(m)
+ ) u(m) (DSxpu@hz +... = (n) ) (DS 1)

Let B = (bpmii) be the matrix defined by

A(n) p(m)

b AX(k) Ap(l) k < n, l < m,
nmkl 0, otherwise.

Therefore, since B satisfies conditions of Theoren II in [19] B is regular and we see
that (Cx ,%)nm = (B(DSx u))nm. Hence since (D ) sto —limy, m—o0 Tnm = L, we
get (C ) ste — limy, 1—y00 Tnm = L. This completes the proof of the theorem. O

Theorem 3.2. The method Dg_., includes (C,1,1) if and only if the sequence

{%} is bounded.
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Proof. Let © = (xg;) be a given double sequence; then for any transformation
(Dg,y), we have

1 q(n),zE(M)

(D/&’Yx)nm = Lkl
Bln) A(m) &=
I=t(m)+1

1 a(n), r(m) p(n), r(m) a(n), t(m) p(n), t
= Bn) ~(m) Z T — Z T — Z Tl + Z Tl
)

(k,1)=(1,1) (k,1)=(1,1) (k,1)=(1,1) (k,1)=(1,1

_ alm) r(m) ! Q(n)i(m)x _p(n) r(m) ;P rm)
— B(n) y(m) \ q(n) r(m) ki B(n) v(m) \ p(n) r(m)

(k,1)=(1,1)

50 30m) \ gy £0m) o 2= By ) \ b0 i, 2
That is
a(n) 7 (m) Cp) rm)
Do =gy 3my CorPnm = gy my oo
_q(n) t(m) . p(n) t(m) -
By 3(m) Co¢nm gy ) (Peom G

Therefore, the sequence (Cy2) may be partitioned into two disjoint subsequences,
namely (Cp ), = (C12) (), () - Let us define the matrix B = (bpnii) as

g(n) r(m)

W y k:q(n)7l:7"(m)

BB L k= p(0.l=r(m)

bump = § S k= q(n),l =t (m)
0 , otherwise.

Regarding (3.1)) as a transformation of the form

(00,00)

E brmkl Thi

(1,1)

which carries C; = (C,1,1) into Dg, we see that (3.1)) satisfies the conditions
(a), (b), (¢), (d) and (e) of Theorem II in Robison [19] and that (3.1)) satisfies (f)
when and only when

qg(n) r(m) p(n) r(m) qmn) t(m) p(n) t(m)
Bln) 2(m) " B(n) 2(m) " Bn) A(m) " Bln) (m)
_ @) +pn) (r(m)+t(m)
B(n) v(m)
is bounded. O

The theorems below give us some inclusion results between Dg . and C) ,
methods.
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Theorem 3.3. Let {\(n)} and {u(m)} be infinite subset of N with \(0) =0 and
1(0) = 0. Then Cy , includes Dg - .

Proof. We shall apply the same technique found in [I]. Assume z = (2.,) is a
double sequence that is Dg 4-summable to L . Then, for any n,m € N

1 A(n), p(m)
CruT)nm = ~V—~——— T
(oo = Sy oy, 2| ™
_ A= A0) (D) — p(0)) ! S
A(n) u(m) (0 = AO) (D) = O], &=,
(A2) = A(D) (u(1) = u(0)) 1 RS
! A(n) u(m) ((A@)—A(l)) G0 0D, 2
+
AA() (1) ~ p(0)) 1 gt
T\ B G a0, A
L @ =M1 (u(2) — (1) 1 5
An) (m) @) = AD) W@ = 11y n B ayin
+
AX(n) Ap(m) 1 Al ) .
T alm) | BAm) Ap(m) k_g;w .
I=p(m—1)+1
_ QW= AO) @) = p(O0) M) Ap(m)
- Mo plm) ey (P

Let B = (bymkt) be the matrix defined by

AX(K) ApD) _ B
bnmkz:{ o) umy 0 k=12 n, I=1,2,0m

0, otherwise.

Clearly, since B satisfies conditions of Theoren II in [I9] B is regular, and we see
that (O ,2)nm = (B(Dg4T))nm. Since

lim (Dg&)nm = L and B is regular, then

n,m—00

we have limy, o0 (B(Dgy%))nm = L. Hence, limy, m—oo(Cx py2)nm = L, and
Cy,, includes Dg .. [l

Theorem 3.4. Let {A(n)} and {u(m)} be infinite subsets of N with A(0) = 0

A(n)

1(0) = 0. Then Dg, includes Cy , if and only if liminf, oo > 1 and

p(m)
s > 1L

lim inf,, _ o
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Proof. Again, we shall apply the same technique found in [I]. Let = (z,,,) be a
given double sequence. Then

1 A(n), p(m)
D S —
(Dl = K3y Bt 2 o

(k, D=X(n—1)+1, p(m—-1)+1

o )\(’]”L) M(m) 1 A(n), p(m)
~ AX(n) Ap(m) (A(n) 1u(m) Z Th

(k,D)=(1,1)

A(n), p(m—1)
A(n m—1 1
_ (n) ) ( - Z xkz)
1

(k,D)=(1,1)

1 )\(n—l),zu(m_l)
+ Tkl
AXn) Ap(m)  \ Mn—=1) p(m—1) e

An—1), p(m)
) Mnnuww< i 5 %J

Mn=1) u(m) = )

IOV A, (L VIUES I,
= (n) A/l m) (O)\,u )nm A)\(n) A,u(m) (C/\7M )n,m—l

(
(m— 1) e pm)
( ) (C)\,,ux)n—l,m—l A)\(’I’L) Au(m) (C)\”u )n—l,m'

n (n—liu

A(

Let B = (bymkt) be the matrix defined by
A(n m
Sy By K=, = m)
:(Ai‘(f)l; (AM(JTR’ k=An), Il =p(m-—1)
bn’rnkl = A)\)‘((T%#(Zn))v k= )\(n — 1), [ = ILL(m — 1)
_WAIM(WL)’ k=An-1), I =p(m)
0, otherwise.
Thus, (Dg,x),,, = (B(Cxut)),,,, and hence Dg . will include C , if and
only if B is regular. Clearly, B satisfies conditions of Theoren II in [19]. Thus B
will be regular if and only if the sequence

{ Am) p(m)  A(n) plm —1)  Aln = 1) p(m —1)  A(n—1) u(m)}
AN(m) Ap(m) T BAm) Au(m) | AAM) Au(m) | AA(n) Ap(m)
is bounded. But,
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and the last expression is bounded if and only if liminf, .. % > 1 and

#@1) > 1. The proof is completed. O

lim inf,, _ o

Combining Theorems [3.3] and the following theorem becomes evident.
Theorem 3.5. Let {A(n)} and {u(m)} be infinite subsets of N with A(0) = 0,

p1(0) = 0. Then Dg~ is equivalent to C , if and only if liminf, )\()‘éﬁ)l) > 1
and liminf,, % > 1.
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