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ON SOME STATISTICAL AND PROBABILISTIC INEQUALITIES

MOHAMMAD MASJED-JAMEI, EDWARD OMEY

ABSTRACT. In this paper, we show how to obtain some important integral
inequalities from statistical and probabilistic point of view. We also explore
the properties of the covariance leading to new classes of inequalities including
the Ostrowski and Ostrowski-Griiss inequalities.

1. INTRODUCTION

Let L'[a,b] denote the space of real and measurable functions with the norm

b
I = [ 1) < o
and L]a, b] the space of bounded functions with

[flloe = lfIl = sup [f(£)] < oo.
a<t<b

Suppose that U is a random variable with uniform distribution wy (z) = 1/(b — a)
on [a,b]. So EU = (b+a)/2 , 0?(U) = (b —a)?/12 and

BAU) = 5 | 10

It is clear that if X has a non-uniform density function, say wx (z), then

b
BfCN) = [ Fpwx(tar
However, we can mainly focus on the uniform random variable U due to the identity
Ef(X)=Ef(W=H(U)),

where Wx (z) = P(X < z), W1(z) is its inverse and U ~ U(0, 1).

Our main aim in this paper is to find appropriate estimates for the difference
between Ef(X) and f(EFX). To reach this goal, in the next section, we recall
Jensen’s inequality and some of its basic extensions. To estimate Ef(X) — f(EX),
there exist two approaches in the literature. In the first one, authors obtaine results
by the Taylor expansion of f, which is explained in Secion 3. In the second approach,
bounds for Ef(X) — f(EX) are obtained by the covariance of random variables
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and its general properties, which is usually neglected in the literature. In section 4,
we first use properties of the covariance and correlation of random variabels to find
back some older inequalities and then obtain some new improvements. Throughout
this paper, we use U to denote a random variable with uniform distribution and
use X to denote an arbitrary random variable defined on [a, b].

2. JENSEN’S INEQUALITY AND SOME OF ITS EXTENSIONS
When f is a convex function, the famous inequality of Jensen [I3] states that
fEX) < Ef(X),
and for concave functions we have
Ef(X) < f(EX).
There are various ways to estimate the difference Ef(X)— f(FX). For instance, as
in [37], let o, 8 be real numbers and f be twice differentiable such that f” is bounded
in [a,b]. Let A(t) = f(t) —at? and B(t) = f(t) — Bt%. Since A”(t) = f”(t) — 2 and
B"(t) = f"(t) — 28, if a, 8 are selected in such a way that a < f”(t)/2 < 8 for any
a <t < b, then we have A”(t) > 0 for a <t < b and A(.) is convex. In a similar
way we can show that B(.) is concave. Therefore, according to Jensen inequality
EA(X) > A(EX),
and
EB(X) < B(EX),
which respectively yield
Ef(X)—-aEX?> f(EX) — aE*X,
and
Ef(X)—-BEX? < f(EX) — BE*X.
In other words
aVar(X) < Ef(X) - f(EX) < gVar(X). (2.1)
Note that even if f is convex, (2.1)) can be sharper than Jensen’s inequality. In-
equalities of the form (2.1)) have received some attention in finance, cf. [I] or [2].
Another upperbound is given in the following proposition.

Proposition 2.1. Let f be a convez function on [a,b] and X be a random variable
defined on [a,b]. Then we have

0 < Ef(X)— f(EX) <max(A,B)Sf(a,b),
in which A= (b—EX)/(b—a), B=(EX —a)/(b—a) and
Stla,b) = fa) + f(b) —2f((a +0)/2).

Proof. Since f is convex,

fla) <

b—x r—a

f(a)+b—af(b) a<z<hb.

Therefore

EJ(X) < B fla) + 52 ) = Af(a) + BS(b),

with A, B as above. Using the equality EX = aA + bB it follows that
Ef(X) - f(EX) < Af(a) + Bf(b) — f(Aa + Bb).
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On the other hand, Lemma 2 of [3T] shows that
Af(a)+ Bf(b) — f(Aa+ Bb) < max(A, B)Sy(a,b),
which proves the result. Il

For example, if U ~ U(a,b), then EU = (a+b)/2 and A = B = 1/2. So
0<Ef(U)— f(EU) < S¢(a,b)/2, which yields

() < prwy < 120

To obtain another upperbound, we can assume that f has a derivative f(!) and
satisfies the condition

F@) =) 2 @ —yfPy)  Vryelab] (2.2)
Note that (2.2)) holds for any differentiable convex function. Let g denote a function

so that f is well-defined on the range of g. Following the approach of [32] or [2§],
we can prove that:

Proposition 2.2. If holds, then
Ef(9(X) — f(Eg(X)) < Coo(g(X), fD(g(X)),
where in general Cov(A,B) = EAB — EAEB and
Ef(9(X)) - f(Eg(X))
> |BIf(9(X) = [(Eg(X))] ~ Elg(X) ~ Eg(X)| [P (Eg(X))]| = 0.
Especially when g(x) = x, we have
Ef(X) - f(EX) < Cou(X, fD(X)),

and
Ef(X) - [(EX) = [E|f(X) = f(EX)| - E|X - EX||fD(EX)|.
Proof. We use twice. In the first case, if # = ¢g(X) and y = FEg(X) are
replaced in , then we find that
F(9(X)) - F(Eg(X)) - (9(X) — Eg(X)) £V (Eg(X)) (2.3)
= [ 00)) ~ £(Eg(X)) ~ (9(X) ~ Eg(X))FO (29(X)
> [£(0(X) ~ F(Ba(X))] ~ 9(X) ~ Bg(X)] [FP(Eg(X))]|.
By taking the expected value from we obtain
Ef(9(X)) - f (Eg(X))
> B|7(6(X)) ~ F(Eg(X))] ~ l9(X) ~ Bg(X)| |{V(Eg(x))]|
> |BIf(g(X) = [(Eg(X))] = Elg(X) ~ Bg(X)||f M) (Eg(X |]
To prove the first inequality, if x = Fg(X) and y = g(X) are replaced in , then

F(Eg(X)) = f(g(X)) = (BEg(X) — 9(X))f M (9(X)). (2.4)
Again, taking the expected value from yields

F(Bg(X)) — Ef(9(X)) = E(Eg(X) — g(X)) [ (9(X)) = ~Cov(g(X), f (9(X))).
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For example, if g(z) =z and X = U ~ U(a,b), then

prw) - 7 [ 0 iy - L0

b—a

and .
Wy — L (1) _bf(b) —afla) _

EUf (U)fb_a/atf (Hdt = ~==— Ef(U).

Therefore we have

bf(b) —af(a)

0< B(U) - f(pv) = LI gy @ X IO =)
which leads to
0< Bf0) - sy < LTI g
and
0< B0 - f(O3 Y < DO peth)

3. ESTIMATES FOR Ef(X) — f(EX) USING TAYLOR EXPANSIONS

3.1. First derivative. Suppose that f(.) has a well-defined derivative f()(.). It
is clear that for a < x and y < b we have

T 1
[ 1@ d =i+ @) [ O+ e g)du
y 0
and for any real number z we have

f@) = fy) — 2(z —y) = R(z —y, 2),

where .
Ra=p.2) = (@=v) [ (Dl+ula=y) - )du
If || f®]| < oo, then
7@) = f() = = = y)| < o= ylsup |10 0) —2|. (3.1)

By replacing = by X and taking the expected value from both sides of (3.1]) we
obtain

[BF(X) = J(9) = 2(EX ~y)| S BIX —ylswp |[fO0) 2. (32)
For example, if X = U ~ U(a,b), then (3.2)) is reduced to

a —a2
Byl = g (= + = 07) = (- et 2

1
2(b—a)

and
Ef(U) — f(y) — 2(BU —y) < — atby, (b—a)

b—a((y_ 2 )y 4

Jsup |1 (1) - 2.
¢
(3.3)
a) If z =0 in (3.3), we find back a result of Ostrowski [29].
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b) If y = EU in (3.3)), then we have
b—a

BfU) - FEV)| < % sup |[FO0) - 2|.

c) If z = EfM(U), (3.3) reduces to
ES(U) - 1) - BfVO(O)(BU - )| (3.4)

a —a)?

On the other hand, if m < f()(t) < M for any a <t < b, then m < Ef(D(U) < M
and

D@~ BFOW)| <M= m.
Therefore, the latter result (3.4]) reads as

M—m 7a+b

Bf(U) = fy) = Ef D (U)(EU )| < 5=~ %5

—a)?
)2+(b4))’

which resembles a result of [§].
d) If z = fM(y) and the modulus of continuity of f(*) is given by w, then by
definition we first have

POy +u(e = y) = FOW)| < wluls - yl).

For a Lipschitz or Holder function, we have w(t) = at® where o > 0 and 8 > 0.
Therefore

1
|3j - y|B+ )

1
R = O] < =yl [ ol =yl du=

which follows that
«
[BFXO) = 1)~ FOW)EX —y)| < 5B IX o

For instance, substituting 5 = 1 in the above inequality yields
BF(X) = f(y) = FOWEX —y)| < SEX —y)*.

3.2. Second derivative. Now assume that f has a second derivative f(2). Then
we have

£(@) ~ 1) ~ FO ) —y) 52w —y) = Rz —y,2),

where
1
Rz —y,2)= (v - 9)2/ (1—u) (f(Q)(y+u(z —y)) — z) du.
0
If Hf@)” < 00, it is clear that

|R(z —y,2)| <

< %(az—y)ngp‘f(”(t) -7, (3.5)
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By replacing « by X and taking the expected value from both sides of (3.5)) we
obtain

EF(X) ~ f(y) ~ FOG)EX ~y) — 52B(X — )" (36)
< %E(X —y)*sup ‘f(z)(t) - Z) :

For example, if X = U ~ U(a,b) in (3.6)), then the equality

a+b, (b—a)?
5 )t

EU-y)?=(y—

implies that

BIO) - 1) - FOGEU ) - B - (3.7
1 b b—a)?
< 2= 30+ P 50 - <.
a)If z= Ef®(U) in , the above inequality reads as
1
B1O) - 1)~ [NV —) - FEFO)E -
1 b b—a)?
< (=0 O |10 - BrO@)]
Such type of inequalities have been derived in [3] and [4].
b) If £()(.) satisfies
F@ @) - 1D )] < wla - ),
with w(t) = at?, a, B > 0, then taking z = £ (y) yields
1
_ (2 _ 28 _ B — _® 2B
) e R e I E= T I

and we find that

EF(X) = f() ~ IO @)EX ) ~ 5 FO@)BX ~ y)?

I 248
s Ty Y

3.3. Higher order derivatives. For higher derivatives, the following proposition
may be applied whose proof can be easily derived by using the Taylor expansion.

Proposition 3.1. Suppose that f has a bounded m — th deriwative f)(.) and
E|X|™ < 0. Then

BX) ~ ) - 3 19 2

m>H ElX —y"
m! ’
=1

<|

1
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4. ESTIMATES USING COVARIANCE AND CORRELATION

Recall that the correlation coefficient between two random variables is defined
as

p(X,Y) = Cov(X,Y)/o(X)a(Y),

where o(X) denotes the standard deviation of X and Cov(X,Y) = EXY —-EXFEY
is the covariance between X and Y. Since |p(X,Y)| <1 so

|Cov(X,Y)| < o(X)o(Y).

The equality appears whenever X,Y satisfy - with probability 1 - a linear relation
of the form aX + Y = ~. Replacing X by f(X) and Y by g(Y), we find that

[Cov(f(X),g(Y)| < o(f(X))a(g(Y)), (4.1)

where o2(f(X)) is the variance of f(X).
In the case of X =Y =U ~ U(a,b), (4.1) is transformed to

b b b
= | 10a0a - = [ s0a o0

<a(f(U))a(g(U))

4.1. Griiss type inequalities. There are other upperbounds for the covariance
under different conditions. The following result was initiated by Popoviciu (1935)
and Griiss (1935). We here present a statistical proof for it.

Lemma 4.1. (i) Let A be a random variable with the mean value EA = 11 such
that m < A < M. Then we have

_ (M=)

4 - 4

in which 8%, (1) = 4(M — 1)(u — m) /(M — m)?,

(i) Let X be a random wvariable with values in the set  and f(.) be a bounded
function with m < f(x) < M forx € Q. If p = Ef(X), then

(M = m)? _ (M —m)?
(iii) Let X andY be two random variables with values in the set Q and f(.), g(.)

be bounded functions such that m < f(z) < M and a < g(xz) < 8 for x € Q. Then
we have

(Cou(F(X), gV ))| < 30m a0 (1)) (M~ m)(5 — ),
where p = Ef(X) and v = Eg(Y).

Proof. (i) By noting the equality

A= M + m,

M —m

and this fact that g(z) = (x — u)? is a convex function, we first have

A—m M—-A
M

M — mg( )+ M—m

—-m M- A
-m

IS

g(A) <

g(m). (4.2)
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Now taking the expected value from both sides of (4.2)) yields

—p (M —m)*

o(A) < L2 g(ary 1+ 27 gm) = 5%, )

~M-m
where 87, (1) = 4(M — p)(u —m)/(M —m)?. On the other hand, since (z —
M)(m — ) is maximum for = (m + M)/2, it follows that 07, 5/ (u) < 1.

The second result (ii) follows from (i) by taking A = f(X) and the third result (iii)
follows from (i) and (4.1 O

Notice that the bound in Lemma (ii) is sharp and cannot be improved. For
example, taking U ~ U(0,1) and

Some remarks on Lemma [4.1]

1) The advantage of &7, 5/(¢) in Lemma (4.1]is when we have information about
1. When there is no information available, we have no choice and just we can
replace 0y, (1) by its upperbound 1. More discussions are in [36].

2) Since g(z) = |z — p| is also a convex function, considering it in Lemma [4.1)i)
yields

2(M — p)(p —m) M—m

EIf(X) = B (0| < S5 g2 0=

3) Lemma [4.1|(iii) is usually formulated for X =Y = U ~ U(a,b), see e.g. ([12],
Theorem 4) or ([I4], Corollary 4).

4.2. Dependency function. Lemma (iii) can be improved by using the de-
pendency function of random variables. Let f(.) and g¢(.) be two real functions
of bounded variation defined on the intervals [a,b] and [c,d] respectively, where
—00 < a,b,¢,d < 00. Also let X and Y be random variables defined on [a, b] and
[¢, d] respectively and assume that Ef(X), Eg(Y) and Ef(X)g(Y) are finite values.
Cuadras in [7] obtained the following extension of an old result of Hoeffding [11]:

b d
Cou(f(X),g(Y)) = / / C(u,v)df (u)dg(v), (4.3)

where
Clz,y) =P(X <z,Y <y)—P(X <z)P(Y <y),

is the dependency function of (X,Y). For f(z) = g(z) = = in (4.3) Hoeffding’s
result is derived. It is well-known that |C'(z,y)| < 1/4. The following Lemma is a
variant of Lemma iii), cf. [9].

Lemma 4.2. If |C(z,y)| < 0/4 for 0 <0 <1, then
[Cov(f(X),9(Y))] < imin(& Sm, 1 ()80, 5(v)) (M —m)(B — ),
where m = f(a), M = f(b),a = g(c) and B = g(d).
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For example, let f(z) = g(x) = 2 and X,Y be defined on [0,1]. Also assume
that the joint distribution is given by
¢ ny

P X<z, Y<y) =K
(X <2,V <y) xy(1+a+1+ﬂ),
where K = (1+a)(1+ 8)/(2+ a+ ). Clearly we have
@ 1 a+28+4
PX<z)=Kz(—+—), EX=p=K—m——
(X <) x(1—|—0¢ 1+5) K 22+ a)(14 B)
1 y? B+2a+4
PY<z)=K — EY=v=K———.
¥ <) x(1+a+1+ﬂ)’ v 22+8)(1+ )
Therefore, the dependency function is computed as
Kxy
C = ——=(z*-1)(1-¢7),
(z,y) 2+a+ﬂ(x )1 —=9")

and
—Kap

CO“(X>Y):/O /0 Cley)drdy = o S E T Bt at by

The function |C(x,y)| attains its maximum at the point

(@°,y°) = (L + )7/ (1 +5)79),

and we have
aﬁxoyo
(2+a+p)?
Now, by noting Lemma consider the 2 terms
dafzy°
2+a+ )%

C(z,y)| <

0= (4.4)

and

So,1(1£)d0,1(v) = 4/ (1 = wp(1 — v)v. (4.5)

TABLE 1. Computation of (4.4), (4.5) and Cov(X,Y) for some values

of o and S.

a B doa1(p)dor(v) 6 |Cov(X,Y)| 0/4

1 1 0.9722 0.0625  0.00694 0.0156
1 2 0.96 0.0924  0.01 0.0231
1 3 0.955 0.1049  0.011 0.0262
2 2 0.9375 0.1481 0.0156 0.0370
2 3 0.926 0.178 0.018 0.0145
3 3 0.91 0.2232  0.0225 0.0558
10 10 0.826 0.512 0.0434 0.1279

As Table [1] shows, the covariance bound of Lemma [4.2]is given by |Cov(X,Y)| <
0/4.

Now, suppose that X is a random variable on [a, b] and f satisfies m < f(t) < M.
Also, let g(z) be an arbitrary function with Eg(Y) = 0. Matic ([20], Theorem 4)
proved the following result, which has appeared also in [6] and as a Lemma in [16].
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Lemma 4.3. Let f(.) and g(.) be two real functions such that m < f(x) < M and
Eg(Y)=0. Then

M —
|Cou(f(X),g(Y))| = |Ef(X)g(Y)| < E|g(Y)]
Proof. Let us define the sets
G(+) = {z: g(a) 20} and G(-) = {z: g(a) < 0},
and assume that /g4y and Ig(_) denote the indicators of these sets. We have
Ef(X)g(Y) = Eg(Y)lg) f(X) + Eg(Y)Ig)f(X).
Since m < f(z) < M, so
Ef(X)g(Y) < MEg(Y)lg+) + mEg(Y)lg(-),
and
Ef(X)g(Y) =2mEg(Y)lg)+ MEg(Y)lg-).
On the other hand, since
Eg(Y)lg) + Eg(Y)Ig-) =0,
we obtain
(m—M)Eg(Y)Igy) < Ef(X)g(Y) < (M —m)Eg(Y)Ig+),
and hence
[Ef(X)g(Y)| < (M —m)Eg(Y)Ig ).
Finally note that
Elg(Y)| = Eg(Y)Ian) — Eg(Y)Ig) =2E9(Y) o),

and the desired result is derived. O

For example, let X be a random variable defined on [a, b] with the density func-
tion h(.). Since

) = [ (= wh(t) dt = B(X — ),
by considering f(t) = (b — a)h(:) and g(t) = (¢ — p)2 we have
02(X) = Bf(U)g(U),
and
Cov(F(1), 9(U)) = EF(U)g(U) — EF(U)Eg(U) = 0*(X) — Eg(U),

where Eg(U) = E(U — p)? = (u — EU)? 4+ o2(U).
Now assume that m < f(.) < M. Applying Lemma [4.3| yields

M—-—m

2

03(X) = BE(U — p)*| < Elg(U) - Eg(U)|.
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4.3. Derivatives. Many authors have obtained bounds for the covariance using
the derivative(s) of the functions involved. For instance:
a) Following [17] if Hf(l) H < 00, then for any arbitrary = we have

Cov(F(X), g0 = |E((f(X) = f(@)(g(¥) ~ Eg(Y))
< B(F(0) - F@)lg(Y) - Eg(Y))).
Now applying | (1) = f(2)] < |.f D]t - o] gives
Cou(f(X), gV )| < |1V BUX =l lg(v) ~ Eg(¥)]). (4.6)
For example, if xt = uy = EX, then
(Cou(f(X), gD < ||| B(X =l lg(¥) = Eg(¥))),

is a generalization of the result obtained in [I7]. Moreover, applying the Cauchy-
Schwarz inequality on (4.6)) leads to

(Cou(£(X), 9| < [ D (BX = )2 20 (g(¥)).
cf. Theorem 5 of [17].

Since B(X —z)? = 0%(X) + (EX — x)?, we realize that x = p is optimum such
that we have

Cou(f(X),g(¥ )| < |1V o(X)a(g(1)): (4.7)
Also, if ||| < oo, we can replace by
Cou(f(X), g NI < |10 [0V 1 = 2ty — B9,
and by
(Cou(f(X), g < ||| [0 || o(x)r ().

The case f(z) = g(z) =  and X = Y shows that this inequality cannot be
improved. Such type of inequality goes back to Chebyshev [19].

b) Assume that Hf(Q)H < 00. By using the previous approach, replacing f by
O yields

Cou(fV(X), 9(V))| < | £2 B(X ~ EX]lg(v) ~ Bg(V)]),
and using the Cauchy-Schwarz inequality gives
@
For example, if g(z) =z and X =Y =U ~ U(a,b), then

[Coo(fV(X),g(X))| < |12 (B(X = 2))!20(g(v)).

Cou(fD W), 0)| < | 2]| o).

On the other hand, it is easy to find that

Cou(s0w),v) = LDy
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So, the inequality can be rewritten as

prw) - HOTI0 < ) £207

which is the same as Theorem 8 of [I7].

4.4. Results based on kernels.

4.4.1. General kernels. Following the paper [24], we now consider a general linear
integral operator of the form

F(f;a) = EK(X;2)f/(X),

where X is a random variable and K (¢; x) is called a kernel. If
EK(X;z) = w(x),
we can define a further kernel as
K°(t;x) = K(t;2) — w(w),
and consequently a linear operator as
Fieo(f;2) = EK°(X;2) f/(X) = Cov (K (X, x), (X)) .
Note that
Fieo(f32) = Fr(f;2) — w(z)Ef'(X).

For example, if K(¢;x) =t and X = U ~ U(a,b), then

w(z) = (a+0)/2,
Fy(f —/tf t)dt = () f(a)—Ef(U),
and
Pt = MO0 gy a0 S
IUESCIp

By noting at the above concepts, the authors in [24] obtained the following results.
Theorem 4.4. a) Suppose that f'(t) < B(t),Vt € [a,b]. Then we have
[Fx(f;2) — EK(X;2)B(X)| < |[K(;2)[ E(B(X) — f/(X)).
b) If a(t) < f'(¢),Vt € [a,b] then
[Fx(f;2) — EK(X;2)a(X)| < [[K(;2)| E(f(X) — a(X)).
c) If a(t) < f'(t) < B(t),Vt € [a,b] then

0(X) +B0)| _ p BX) —a(X)

Fr(f;2) — EK(X; @) 5 < 5 |K(X;2)]).
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Proof. To prove part a) since
Fr(fiz) - EK(X;2)B(X) = E(f'(X) - B(X))K(X; 2),
|Fr(f;2) — EK(X;2)B(X)] < BE(B(X) — f(X))K(X; ),

and the result follows. The proof of b) is similar. Finally for the proof of ¢) we first
have

e I I GO R = P
< p|(reo - ) kx|,

On the other hand, the given condition a(t) < f/(t) < S(t) implies that

[F(#) = (a(t) + B(1)/2] < (B(t) — a(t))/2.

Therefore
Filfio) - B ) * LA < p P00 e,
O

Similar results can be derived for Fxo(f;x) as follows.
Corollary 4.5. a) Suppose that f'(t) < A(t),Vt € [a,b]. Then we have

(Fieo(f:2) — BE(X;2)(X) — w(@)Ef(X)] < [ K°(; )| BB(X) — f/(X)).

b) If a(t) < f'(£),Vt € [a,b] then

Fie(f; ) — EE(X; 2)a(X) — w(@)EF(X)] < |[K°(;2)| B((X) - a(X)).

&) I alt) < /() < B, e € [a,8] then
Fie(fia) - B (X;0) 2P )| < AR 20 o),

2 2

Notice that the above corollary can be simplified if a(t) and B(¢) are constants.
In other words:

Corollary 4.6. a) Suppose that f'(t) < B,V € [a,b]. Then we have
[Fre(fi2) = Bw(z) —w(x)Ef (X)| < [|[K°(;2)[| (B — Ef'(X)).
b) If o < f'(t),Vt € [a,b] then
|Fr(f;2) — aw(z) —w(z)Ef' (X)| < [[K°(52) | (Ef(X) — o).
¢) If a < f'(t) < B,Vt € [a,b] then

a+ﬁw
2

Fie(f;) = (@) — w(@)Ef (X)| < B;QE\KO(X;QJ)\-
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4.4.2. Specific kernels. Following [g], [18], [33], [34] we may define the linear kernel
t—A a<t<ux,
K(t;z) = (4.8)

t— B r <t<b,

in which A, B are real numbers and obtain some properties of K(U;x) where as
before U ~ U(a,b).

Lemma 4.7. Corresponding to the kernel (4.8) we respectively have

' w(e) = EKWia) = 20 e P2 )
(i1
Var (K (Vi) = () + =00 28y,
(iii)
(b-a)E|KUsz)| = sign(z - A)w + sign(A — a)@
+sign(B — x)@ + sign(b — B)@,

Proof. (i) First it is clear that
K(t,l‘) =t— B+ (B - A)I{a§t§1}7
where Ig is the indicator function of the set S. Therefore

b
w(z) = BU — B+ (B — A)El{gey<g) = % — B+ (B- AP < 1)

r—a a-+b
+ —

:(B_A)b—a 2

B.

(ii) Using
K(U;x) =U — B+ (B — A){a<v<a}
we find that

Var(K(U;z)) = Var(U) + (B — A)*Var(Ig,<u<sy) + 2(B — A)Cov(U, Ija<v<ay)-

Since
xr—a ,x—a (x —a)(b—x)
Var(l{aSUgi}): b—a _(b—a)2: (b_a)z )
and
1 T
Cou(U, I{agng}) = - / tdt — EUEI{agng})

(z—a)(xta) btaz—a _(z—a)(z-D)

2(b—a) 2 b—a  20b—a)

it follows that
(B—A)(ac—a)(b—x)(B—A )
b—a b—a ’

Var (K(U;x)) = o*(U) +
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(iii) First we have
BIK(U:2)| = — (/x it — Al dt+/b|t Bl dt) = —— (1 + 1)
)| = —— — — =— )
’ b—a'/J, x b—a
Now if A < a < x, then

e x—A)? (a—A)?
I = /a(t—A)dt:( > F ! > )
= sign(z— A)w + sign(A — a)w,
and if A > x > a, we once again obtain
I= /I(A —t)dt = sign(x — A)@ + sign(A — a)w.

This means that if a < A < x, then

I = sign(x — A)w + sign(A — a)@.
In a similar way, we can conclude that

11 = sign(B — x)@ + sign(b— B)@

So the result follows. In this sense, note that

K (t;2)| < max(la — Al Jo — A, |b— B|, |z — B)).

Lemma 4.8. Corresponding to the kernel (4.8]) we have

EK(U:0) () = 5= (@) 4 L= (0= Ata)

and

Cov(K(U;x), f'(U))

_ Ji:ff(x) L b=B- w(w))f(bl)): ia —A—w())f(a)

_Ef(U).
Proof. Since
b T b

[ Kwarwa= [ w-arwas [¢-pyroa
integrating by parts yields

b x

[ EEoroid = @-2f@- - - [ o
b
Ho=B)O) ~ (o= B)f(@) - [ Fie)ar

By rearranging the above terms, we can achieve the first result. The second result
can also be derived from the first one. (]
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Two remarks on the kernel (4.8).

1) If ||f(1)H < 00, then we have

BRSO = | )+ CEIOZOZ A )
< s Eix ;e

For example, substituting A = a and B = b yields
[f(2) = BF)| < |0 max(z — a,b — a).

2) Since
Cov(K(U; ), f'(U)) = E(K°(U; 2) f'(U)) ,
where K°(¢;z) = K(t;2) — w(x), i.

e.
t—ot 4 B=Ap ) a<t<ua,
K°(t;x) = it (4.9)

t—ath _Bodp_gq) z<t<y,

we have
|[K°(t;x)] <

b;a |B_A|max(x—a,b—x).

+
b—a
Moreover

I1K°(;2)|| = max(la — A —w(z)], |z — A —w(@)], b — B —w(@)|, |z — B —w(z))).

We can now present some useful upperbounds for Cov(K(U;x), f/(U)) via the
kernel K°(t;x) = K(t;x) — w(zx) given by (4.9).
a) Using (4.1)), we find that

Bty =B w0 (oA wIE) gy
o(K(U;z))o(f'(U)).
b) Using (4.3), we obtain
‘i:fﬂm) NE=E w(w))f(bz: ia — A - w(@)f(a) _ Ef(U)‘

< |1 BGU — 2l 1K @),
For example, replacing A = a and B = b in the above inequality gives

f() — fla
£(a) ~ BW) — () D110
which is related to Ostrowski-Griiss inequality introduced by Dragomir and Wang
[8]. In this direction, if f is also differentiable such that —oco <m < f/(z) < M <
o0, V& € [a,b], then they proved that

b
‘f(w)—bla/ £ty i~ w(a 7O~

a

<||f@] £ v —al 1x° @),

(b= a)(M —m)

<
- 4
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c) Assume that m < f'(t) < M. Thereforem < Ef'(U) < M and |f(U) — Ef'(U)| <
M — m which eventually yields o(f'(U)) < M — m. Hence, we have

ﬁ_:f(x) L b-B- w(w))f(bz - ia —A=w@)D) g

< (K (Us2))(M — m).
For instance, A = a and B = b in the above inequality yields

f®) ~ fla)| _ (b=a)(M —m)

z)—FEf(U)—w(x 4.10
@) - B1(0) ~ u(o) O =10 < CZ 00 (4.10)
Let us consider a particular example for (4.10). Take a = 0, b = 1 and define
12 0<t<uz,
ft=1 "
stP—t+z  x<t<l1.

By noting that f(0) =0, f(1) = 2 — 1/2 and f(z) = 22 /2, straightforward calcula-
tions show that:

Ef(U)—/zthdt—s-/l(th—t—s— )alt——1 24y
=/ 3 G g)dt =—ga” +— 2.
Hence, the left hand side of (4.10]) equals to
atb fO) - f@| 1 _ 1
_ A - <
@) - ) - o - 3 H IO < 2

d) Let m < f/(t) < M. It can be deduced from Lemma [4.3] that

‘i_fﬂ@+@3w@»ﬂ2_wa@Dﬂ®Eﬂm

M—-—m
<

E|K°(U;x)|.

On the other hand, we proved that
b—a |B-A4]
2

K°(t; <
Ko < 20+ S

max(z — a,b — x).

Therefore
M—m(b—a |B — A
2 b—a

|Cov(K (Us;x), f'(U))] < 5 max(z — a,b— x)).
To find more precise bounds for E'|K°(U;x)|, we should consider seven different

cases respectively as follows.

Casel. If a — A > w(z) and x — B < w(z) < b — B, then K°(t*;x) = 0 where

t* = B+ w(x). Tt is clear that

K°(t;2) >0 for a<t<z or t>t"

and
K°(t;x) <0 for a <t<it",
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T b t*
(/ +/)K°(t;x)dt:—/ K°(t;z) dt
a t* x
Therefore we have

E|K°(U;z)| = bia((/:‘L/:)Ko(t?x)_/:Ko(t;x)dt)

_ (z=B-w()*
b—a '

and also

tac

Case2. If x — A < w(z) and x — B < w(z) < b — B, then K°(t*;x) = 0 where
t* = B+ w(x). It is clear that

Ke(t;x) <0 for a<t<z or xz<t<tr

and
K°(t;2) >0  for t* <t <hb,
and also
T t* b
—(/ -|-/ )Ko(t;x)dt:/ K°(t;x) dt
a x t*
Therefore

picwe) = ([ [ [ e

2 e, o (b= B—w(@)?
= b_a t*K(t,.’I;)dt—T

Case3. If a — A < w(z) <x— A and b— B < w(z), then in a similar way we find

that
(2= A - w(@)?”

EK°(U; =
BE(U;2)| = 2
Cased. If a — A< w(z) <z — A and z — B > w(z), then we find that
_A- 2
B|K°(U;x)| = @70

Case 5. Ifa—A<w( )<z—Aand z — B < w(z) <b— B, then K°(t*;z) =0
where t] = A — w(z) and tQ—B w(zx). It is clear that

/ / VK°(t:7) d t:(/:+/:)K°(t;x)dt

(z = A—-w(@)*+ (- B—w)’
b—a '

So we get

E|K°(U;x)| =

Case6. If a — A > w(z) and b — B < w(x), then
K°(t;z) >0  for a<t<u,

and
K°(t;z) <0 for z<t<b.
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2 x
K°(t;x) dt
= | Ko

(z—A-w@)?—(a—A-w)? (z—a)(x+a—24— 2w(:v)).

Therefore

E|K*(U; )

b—a b—a

Case7. If t — A < w(z) and z — B > w(x), then

K°(t;2) <0 for a<t<uz,

and
K°(t;z) >0  for z<t<b.
So
E|K°(U;z)| = b_a/Kotx
(b— B —w(x))?—(x— B — w(x))2_(b—m)(m—i—b—?B—Qw(m)).

b—a b—a

The following table summarizes all above-mentioned cases.

TABLE 2. All conditions for evaluating F |K°(U;x)|

case condition 1 condition 2 E|K°(U; )|

1 w<a—A r—B<w<b-B (a):%
2 z-A<w r—B<w<b-B (b):%
3 a-A<w<z-—A b—B<w (c)—%
4 a—A<w<z—A w<x—B (d) = %
5 a-A<w<z—-A r—B<w<b—B (b)+ (¢

6 w<a-—-A b—B<w (c) - (d)

T r—A<w x—B>w (b) - (a)

4.4.3. Some Special cases of the Table[d
1) If A=a and B = b, then w(z) =2 — (a+b)/2 and E|K°(U;z)| = (b—a)/4.
This case was treated by Cheng ([5], Theorem 1.5).

2) Ujevic ([33],[34]) considered the kernel K (¢,z) in (4.8) with A = (2a + b)/3,
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B = (a+2b)/3 and x = (a+b)/2. In this case A+ B=a+band B—A = (b—a)/3,
which leads to w(x) = 0,

Var (K(Usz)) = éﬁ(U) _ 0 ;6“)2,
and ) ) b
Con(k(Usa), f/(U)) = £ 72y + T )
So we find that
L ath )+ fla) ba .,
0+ T )| < o)
On the other hand, using Lemma gives
O+ IO )| < X2 p e wia),

where K° = K. Therefore, by considering different cases of Table 2] only case 5
appears and we have
5(b—a)

36

E|K*(U; )| =

3) In [35] the author consideres the kernel K (¢;x) in (4.8) with A = (5a 4+ b)/6,
B = (a+5b)/6 and x = (a+b)/2. In this case A+ B =a+band B—A =2(b—a)/3,
which respectively yields

2
w(r) =0, Var(K(U:2) = U2
and
2 b b
Conk ). FU) = S+ 0- 5l IO
2 b b
= 2@ty SO ),
So, by using we find that
2 b b b—
2 L0y <Pty )
On the other hand, using Lemma [4.3] gives
2 b b M —
i@y IOy < M (),
where K° = K. Hence, only case 5 appears again and we obtain
S _(x—A)2+(b—B)2_5(b—a)
E|K°(U;xz)| = r— =25
Let us consider a sharp example for ([{.11]). Take [a,b] = [0,1] and define
312 — &t 0<t<3,
1) = 142 5y, 1 1
sl logp<n,
Since Ef(U) =0, f(0) = f(1) =0 and f(1/2) = 1/24, we have
2 .a+b,  fla)+ f(b) 1
‘3f( T =
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Also Ef'(U) =0 and

1/2 1
Ef?(U) :/O (t—1/6)2dt+/1/2(t—5/6)2dt

_ (1/2*1/6)3*(*1/6)3+(1*5/6)3*(1/2*5/6)3 _ 1

3 3 36
This means that
2 .a+b,  fla)+ f(b) _b—a ,,
21+ LI ) = Y,

4) Consider K (t;z) in {.8) with A=a+h(b—a)/2 and B =b— h(b—a)/2 where
0<h <1. Inthiscase A+ B=a+band B— A= (1—h)(b— a), which yields
a+b
),

w(z) =(1—h)(x— 5

Var (K(U;z)) = o*(U) — h(1 — h)(z — a)(b — x),

EK(U;) ') = (1= mf@) + DIy,

and

Jb) = f(a)

—a

Cov(K(Usz), f/(U)) = (1—h) f(z) + hw

—Ef(U) —w(x)

Now suppose that A < x < B where a < A, B < b and x > (a + b)/2 so that
w(z) > 0. Then we respectively obtain

a—A—w(x) = hz—b)—(r—(a+b)/2) <0,
z—A—-w(x) = hlx->0)+(b—a)/2,
x—B—w(x) = hz—a)—(b—a)/2,

and
b—B—w(z) = h(z—a)— (z— (a+b)/2.
As before, only cases 3, 4 or 5 of Table 2] are possible.

Corresponding to case 3, if h(x —b)+ (b—a)/2 > 0 and h(z —a) < z— (a+)/2,
then
B (— 2
b—a
Corresponding to case 4, if h(x —b) + (b —a)/2 > 0 and h(zx —a) > (b—a)/2,
then

(h(z = b) — (x — (a+b)/2))?
b—a '
Corresponding to case 5, if h(x —b)+(b—a)/2 > 0 and (z—(a+b)/2 < h(x—a) <
(b—a)/2, then

E|K°(U;x)| =

(h(z—a) = (= (a+b)/2)*  (h(z=b)+(b—a)/2)*

E|\K°(U;x)| =
[K(U; )] b—a b—a
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Similarly, special cases include:
i) h = 0 which gives A = a, B = b leading to the result of Ostrowski [29].
ii) h=1gives A= B = (a + b)/2 and w(xz) = 0. So, for > (a + b)/2 we obtain
(a—A—w(x)? b—a
b—a 4

E|K°(U;x)| =

iii) h =1/2 and h = 1/3 lead to new estimates.

5)In [I5], A=a+60(x —a) and B = b+ 0(x — b) are considered where 0 < 6 < 1.
In this case we have
w(z) = EK(U;z) = (1 —20)(x — ath

2

).

6) In (5], Secion 2), A = x4+ (a—b)/2 and B = x+ (b—a)/2 are considered. Hence
A+B=2z,B—A=b—a,w(zr)=0and

Cov(K(U;2), fOU) = f(z) = EF(U) — (x —
Again when a < z < (a 4 b)/2, we respectively find
a—A = a—x—(a—b)/2=(a+b)/2—2>0,
x—A = (b—a)/2>0,
b—B = b—z—(b—-a)/2=(a+b)/2—2>0,

VEfD(U).

a+b
2

and
x—B = —(b—a)/2<0.
Ounly case 1 appears in these cases which yields E|K°(U;z)| = (b —a)/4.

7) In ([B], section 3), A = (z 4+ a)/2 and B = (z + b)/2 are considered where
a<z<b Hence A+ B=z+ (a+b)/2, B—A=(b—a)/2, w(z)=0 and

(b—=z)f(b) = (a = x)f(a)

Coo(K(Us2), (V) = 5 f(x) + (e - Bf(U).
In this sense, Lemma gives
Cov(K(U; ), f(0))] < 2= B |K(U; )]

- 2
By considering all 7 cases of Table [2] only case 5 appears and we get
(b=2)* + (x —a)?

4(b—a) '
Remark. Although the above-mentioned results are related to the uniform variable
U ~ Ul(a,b), one can consider them for a general random variable. Let X denote
an arbitrary random variable defined on (a,b) whose distribution function is as
G(x) = P(X < ) and its density function as g(x) = GV (z). Inspired by [18], we
now consider the kernel K (t;x) as follows:

E|K°(U;x)| =

% t<zx
K(t;z) = 9(t) o

g(t)
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Since
EK(X;2)fM(X) = f(x) — Ef(X),

and

EK(X;z) = /mG(t)dt—k/b(G(t)—l)dt

T t b b
= / / g(z)dzdt — / / g(z)dzdt
t=a Jz=a t=x J z=t
T b

_ /: (x—z)g(z)dzf/i (z — 2)g(z) dz = E(X — z),

zZ=a Z=T

and in a similar way

E|K(X;z)| = /wG(t)dt+/b(1 —G(t)dt=E|X — 1],

so we have

Cov(K(X;z), fM(X)) = f(z) - Ef(X) — EK(X;2)Ef 1 (X).

If Hf(l)H < oo then
EK(X;2)fD (0| < || 0] 21X -2
For estimating the covariance, inequalities of the previous section can be used.

Recall that ,
f(2) — Ef(X) = / K (t:2) £ (£)g(t) dt.

Now if f1(.) is replaced by fP)(.), we obtain
EE(X:)f*(X) = fO1) - EfY(X),

or
fO) = BEK(X;) fP(X) + BfY(X).
So

f(z) = Ef(X)

/ (o) (EKCGO£9(X) + EFOX0) gl di

N / K (t;2) EK(X;5) f® (X)g(t) dt + Ef D (X)EK(X; ).

By rearranging terms we obtain

IN

fl@) = Bf(X) - EK(X;x)Ef(l)(X)‘ Hf@)

H 7@

b
/ K (t:2)| B |K (X 1)) g(t) dt

IN

b
/ K (t:2)| E|X — t]g(t) dr.
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4.5. Extensions for the kernel K?(¢;z). In this section, we use the same kernel
as defined in (4.8) but study EK%(U;z)f' (U) and EK?(U;z)f"(U).

Lemma 4.9. If the kernel K is defined as in (4.8) then we respectively have

- - 2 —(a— 2 a
ER U fOW) = 25 A LB py o Q2O AT

—2EK(U;2)f(U).

_A+B (b= B)*FV(b) - (a— 4)*fV(a)

2BfA

2(77. (2) _
ERYUs)fOU) = 25—

(x O () +

2 b—a

—2EK(U;z) fV(U).
Proof. Since EK?(U;2) fM(U) = (I 4 IT)/(b — a) where

1= [u-aroma
and ,
II :/ (t — B)2 M (1) dt,

using integration by parts gives
x

T=(x— A2f(x) — (a— Af(a) — 2 / (t— A)f(t) dt,

a

and

b
1= (6= BR0) - (o~ BEf@) -2 [ (- B0
Therefore '
I+1I = ((z—A)?~(z—B)*)f(z) + (b—B)*f(b) — (a — A)*f(a)
b
72/ K(t;z) f(t)dt.
The second result follows from the first one by replacing f() by £, O

Now let us consider Cov(K?(U;x)f® (U)). We first have
Cov(K*(Us2) f(U)) = BH(Us2) P (U),

where H°(t;z) = K2(t;x) — wa(z) and wa(z) = EK?(U;z). To find wa(z), recall
that

Var (K(U:a)) = o*(0) + B 00=D B22 )
So, by using the equality Var (K (U;x)) = wa(x) — w?(x) where
wi(e) = (Vi) = 02 ~ B+ 5= (w—a).
we can obtain
(@) = *(U) + B A)(bw:aa)(b_ x)ﬁ:f s uia),
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For instance, if A = a and B = b, we have

a —a)?
wa(z) = (x — ;rb)2+(b 12) )

As before, we in this section study the values H® = K?(t;x)—wo(z) and E |H°(U; x)|.
First of all, note that

(t— A)2 — way(x),

is a convex second degree polynomial with zero’s t1 = A + \/wy(z) and top in
t=A and

(t — B)* — wsq(x),

is convex with top in ¢ = B and zeros z4,_ = B £ \/wa(x).
Now one can consider several cases. First suppose that A = a and B = b. Four
following cases happen:

Ifa<ty <xzthen Ho(t;z) <0fora <t <ty and H°(t;z) > 0forty <t <.
If x <ty then HO(t;z) <0 fora <t <uzx.
Ifx < z_ <bthen H°(t;z) > 0forx <t < z_ and H°(t;z) <0for z_ <t <b.
If z_ <z then H°(t;x) <0 for x <t <b.

Consequently:

1) If al) and b1) hold, then we have

slewa) = o e [ ([ Do

= ¢ :+[>H°<t;x>dt
= 2w, A ) )
B DY) R VTG R
B Y N N c R
B N c
2) If a1) and b2) hold, then
s = 52 [Crene- 2 ST e )
S R0 S B P o 2)
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3) If a2) and bl) hold, then

2

zZ_ _ K3
Bl W) = o [ s a - 2

(S —w(e) )

wd?(z) = (z — b)3
= ATy a),

4) If a2) and b2) hold, then the equality EH°(U;z) = 0 cannot hold.

Note that al) holds if and only if \/ws(z) < x — a, or wa(z) < (z — a)?, i.e. by
using the expression wq(x) it holds if

a+b (b—a)?
- e Oy
or
(b—a)® b—a 3a+b
< —
o =g BTy

which gives (b+ 2a)/3 < z.
Similarly a2) holds if z < a + y/wy(x) which leads to = < (b+ 2a)/3.

The special case A =a, B ="5b and x = (a + b)/2 has been considered in [33] so
that

B . _(b—a)2
wy(a) = B (WU50) = U0

and t; _ =a=+ (b—a)/2V3 and finally z, _ =a+ (b—a)/2V/3.
Moreover, a < t; < x and z < z_ < b imply that

_q)3 —a 3 _a)3 _a)?
E|H°(U;x)|:b3a((b 12) LA 33/2\@ U 12) )=(b9\/§) .

In general, more possibilities for A and B are as follows:
a) If A < a and

al) A <ty < a.In this case H°(t;z) > 0 fora <t < .
a2)a <ty =A+ Jw(z) <z,

then H°(z;t) <0 fora <t < tyand H°(x;t) > 0 forty <t <ux.
ad) x < ty,then H°(x;t) <0 fora <t < x.

b)Ifa < A< x and

bl)t_ < aandty > z,then H°(t;2) < 0 fora <t < z.
b2)t_ < aandty < z,
then H°(t;x) < 0 fora <t <tyand H°(t;x) > 0 forty <t <ux.
b3)a < t_andty > x,
then He(t;z) <0 fort_ <t <zand H°(t;x) > 0 fora <t <t_.
bd)a <t_andty <z,
then H°(t;x) > 0 fora <t <t_orty <t <zand H°(t;z) <0 fort_ <t <t;.
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c¢) If A=z and

el)t_ < a,then H°(t;z) < 0 fora <t < z.
2)a <t_ <z,
then H°(t;x) > 0 fora <t <t_and H°(t;x) <0 fort_ <t < ux.

d) If A >z and

dl)t_ < a,then H°(t;z) < 0 fora <t < z.
d2)a <t_ <,

then H°(t;z) > 0 fora <t <t_and H°(t;x) <0 fort_ <t <uz.
d3)x < t_,then H°(t;2) > 0 fora < t < z.

Clearly a similar list can be made by considering the cases for the position of
B. One can now use the results of previous sections to obtain upperbounds for
Cov(K?(Usz), f"(U)).

Final Remark. We can similarly extend the problem and obtain

EK™U;z)f"(U) = I +II —mEK™ Y(U;z)f™Y(U),

where
I S (@) (w =A™ = fr Y (@) (a — A
b—a ’
and
1 LTI By f () - B

b—a ’
in order to study Cov(K™(U;z), f(™(U)).
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