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SOME FIXED POINT THEOREMS IN ORDERED DUALISTIC

PARTIAL METRIC SPACES WITH APPLICATION

MUHAMMAD NAZAM, MUHAMMAD ARSHAD, AFTAB HUSSAIN

Abstract. In this paper, we introduce the notion of dualistic contraction

of rational type. We prove some fixed point theorems for ordered mappings
satisfying above mentioned contraction. We give examples to illustrate the

importance of these results. We present an application of our fixed point

result to show the existence of solution of integral equations.

1. Introduction and preliminaries

Matthews [6] introduced the concept of partial metric spaces as a suitable math-
ematical tool for program verification and proved an analogue of Banach fixed point
theorem in complete partial metric spaces. Fixed point theorems in complete par-
tial metric spaces have been investigated in [1, 4, 9]. O’Neill [10] introduced the
concept of dualistic partial metric, which is more general than partial metric and
established a robust relationship between dualistic partial metric and quasi metric.
Oltra and Valero [11] presented a Banach fixed point theorem on complete dualistic
partial metric spaces. Valero also showed that the contractive condition in Banach
fixed point theorem in complete dualistic partial metric spaces cannot be replaced
by the contractive condition of Banach fixed point theorem for complete partial
metric spaces. Following Oltra and Valero, Nazam et al. [7, 3, 8] established some
fixed point results in dualistic partial metric spaces for Greghty type contraction
and monotone mappings and discussed an application of fixed point theorem to
show the existence of solution of integral equation.
For the sake of completeness, we recall Geraghty’s Theorem. For this purpose,
we first remind the class S of all functions β : [0,∞) → [0, 1) which satisfy the
condition:

lim
n→∞

β(tn) = 1 implies lim
n→∞

tn = 0.

In [5], Geraghty presented a new class of mappings T : M →M , known as Geraghty
contraction, which satisfies the following condition:

d(T (j), T (k)) ≤ β(d(j, k))d(j, k), (1.1)
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for all j, k ∈M , where β ∈ S. For this new family of mappings, Geraghty [5] proved
following fixed point theorem.

Theorem 1.1. [5] Let (M,d) be a complete metric space and T : M → M be a
mapping. Assume that there exists β ∈ S such that, for all k, l ∈M ,

d(T (j), T (k)) ≤ β(d(j, k))d(j, k).

Then T has a unique fixed point υ ∈ M and, for any choice of the initial point
j0 ∈ M , the sequence {jn} defined by jn = T (jn−1) for each n ≥ 1 converges to
the point υ.

Following Geraghty, Amini-Harandi and Emami [2] generalized Theorem 1.1 in
context of ordered metric spaces, as follows.

Theorem 1.2. [2] Let (M,�) be an ordered set and suppose that there exists a
metric d in M such that (M,d) is a complete metric space. Let T : M →M be an
increasing mapping such that there exists j0 ∈ M with j0 � T (j0). Suppose that
there exists β ∈ S such that

d(T (j), T (k)) ≤ β(d(j, k))d(j, k) for all j, k ∈M with j � k.
Assume that either T is continuous or M is such that if an increasing sequence {jn}
converges to u, then jn � u for each n ≥ 1.
Besides, if

for all j, k ∈ M , there exists z ∈ M which is comparable to both j and k, then
T has a unique fixed point in M.

La.Rosa and Vetro [12] have extended the notion of Geraghty contraction map-
pings to the context of partial metric spaces.

In this paper, we shall present Theorems 1.1 and 1.2 in dualistic partial metric
spaces. We shall show that our results generalize Theorems 1.1 and 1.2 in many
ways. In last section we shall apply our fixed point theorem to show the existence
of solution of a particular class of integral equations.

j(w) = g(w) +

∫ 1

0

Gn(w, s, j(s)) ds ∀ w ∈ [0, 1].

We need some mathematical basics of dualistic partial metric space and results
to make this paper self sufficient.

Throughout this paper, the letters R+
0 , R and N will represent the set of nonneg-

ative real numbers, set of real numbers and set of natural numbers, respectively.

O’Neill [10] introduced the notion of dualistic partial metric as a generalization
of partial metric in order to expand the connections between partial metrics and
semantics via valuation spaces.

According to O’Neill a dualistic partial metric can be defined as follows:

Definition 1.3. [10] Let M be a nonempty set. If a function D : M ×M → R
satisfies, for all j, k, l ∈M , the following properties:

(1) j = k ⇔ D(j, j) = D(k, k) = D(j, k).
(2) D(j, j) ≤ D(j, k).
(3) D(j, k) = D(k, j).
(4) D(j, l) +D(k, k) ≤ D(j, k) +D(k, l).
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Then D is called dualistic partial metric and the pair (M,D) is known as dualistic
partial metric space.

Following [10], each dualistic partial metricD onM generates a T0 topology τ(D)
on M . The base of τ(D) consists of family of open balls {BD(j, ε) : j ∈M, ε > 0},
where BD(j, ε) = {k ∈M : D(j, k) < ε+D(j, j)}.
A sequence {jn}n∈N in (M,D) converges to a point j ∈M if and only if D(j, j) =
limn→∞D(j, jn).
If (M,D) is a dualistic partial metric space, then dD : M ×M → R+

0 defined by

dD(j, k) = D(j, k)−D(j, j).

is called a quasi metric on M such that τ(D) = τ(dD) for all j, k ∈ M . Moreover,
if dD is a quasi metric on M , then dsD(j, k) = max{dD(j, k), dD(k, j)} defines a
metric on M .

Remark. It is obvious that every partial metric is dualistic partial metric but
converse is not true. To support this comment, define D∨ : R× R→ R by

D∨(j, k) = j ∨ k = sup{j, k} for all j, k ∈ R.

It is clear that D∨ is a dualistic partial metric. Note that D∨ is not a partial metric,
because D∨(−1,−2) = −1 /∈ R+

0 . However, the restriction of D∨ to R+
0 , D∨|R+

0
, is

a partial metric.

Example 1.4. If (M,d) is a metric space and c ∈ R is an arbitrary constant, then

D(j, k) = d(j, k) + c.

defines a dualistic partial metric on M.

Definition 1.5. [10] Let (M,D) be a dualistic partial metric space, then

(1) A sequence {jn}n∈N in (M,D) is called a Cauchy sequence if
limn,m→∞D(jn, jm) exists and is finite.

(2) A dualistic partial metric space (M,D) is said to be complete if every
Cauchy sequence {jn}n∈N in M converges, with respect to τ(D), to a point
j ∈M such that D(j, j) = limn,m→∞D(jn, jm).

Following lemma will be helpful in the sequel.

Lemma 1.6. [10, 11]

(1) A dualistic partial metric (M,D) is complete if and only if the metric space
(M,dsD) is complete.

(2) A sequence {jn}n∈N in M converges to a point j ∈ M , with respect to
τ(dsD) if and only if limn→∞D(j, jn) = D(j, j) = limn→∞D(jn, jm).

(3) If limn→∞ jn = υ such that D(υ, υ) = 0 then limn→∞D(jn, k) = D(υ, k)
for every k ∈M .

Oltra and Valero [11] established a Banach fixed point theorem for dualistic par-
tial metric spaces in such a way that the Matthews fixed point theorem is obtained
as a particular case.
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2. The results

In this section we shall prove fixed point theorems 1.1 and 1.2 in ordered dualistic
partial metric spaces. To this end we need to define following notions:

Definition 2.1. Let M be a nonempty set. Then (M,�, D) is said to be an ordered
dualistic partial metric space if:

(1) (M,�) is a partially ordered set.

(2) (M,D) is a dualistic partial metric space.

Definition 2.2. Let (M,�) be a partially ordered set and suppose that (M,D)
is a dualistic partial metric space, a mapping T : M → M is called a generalized
dualistic contraction of rational type if there exists β ∈ S such that,

|D(T (j), T (k))| ≤ β(N(j, k))N(j, k), (2.1)

for all comparable j, k ∈M .

Where N(j, k) = max

{
|D(j, k)|,

∣∣∣∣D(k, T (k))(1 +D(j, T (j))

1 +D(j, k)

∣∣∣∣} .
Now we present our main result:

Theorem 2.3. Let (M,�) be a partially ordered set and suppose that (M,D) is a
complete dualistic partial metric space and let T : M →M be a mapping such that,

(1) T is a dominated mapping.
(2) T is a generalized dualistic contraction of rational type.
(3) either T is continuous or if {jn} is a non increasing sequence in M such

that {jn} → υ, then jn � υ for all n.

Then T has a fixed point υ ∈ M and the Picard iterative sequence {Tn(j)}n∈N
converges to υ with respect to τ(dsD), for every j ∈M . Moreover, D(υ, υ) = 0.

Proof. Let j0 ∈ M be an initial element and jn = T (jn−1) for all n ≥ 1, if there
exists a positive integer r such that jr+1 = jr then jr = T (jr), so we are done.
Suppose that jn 6= jn+1 for all n ∈ N, then since T is dominated mapping, we
have j0 � T (j0) = j1 that is j0 � j1 and j1 � T (j1) implies j1 � j2, moreover,
j2 � T (j2) implies j2 � j3, continuing in similar way, we get

j0 � j1 � j2 � j3 � ... � jn � jn+1 � jn+2 � ...

Since jn � jn+1, from contractive condition (2.1), we have

|D(jn+1, jn+2)| = |D(T (jn), T (jn+1))|,
≤ β(N(jn, jn+1))N(jn, jn+1) < N(jn, jn+1).

Where

N(jn, jn+1) = max

{
|D(jn, jn+1)|,

∣∣∣∣D(jn+1, jn+2)(1 +D(jn, jn+1)

1 +D(jn, jn+1)

∣∣∣∣}
= max {|D(jn, jn+1)|, |D(jn+1, jn+2)|} .

If |D(jn, jn+1)| ≤ |D(jn+1, jn+2)|, then N(jn, jn+1) = |D(jn+1, jn+2)|.
From contractive condition (2.1) we have,

|D(jn+1, jn+2)| ≤ β(N(jn, jn+1))N(jn, jn+1) < N(jn, jn+1) = |D(jn+1, jn+2)|,
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which is a contradiction. Consequently, N(jn, jn+1) = |D(jn, jn+1)|. So in this
case (2.1) gives,

|D(jn+1, jn+2)| < |D(jn, jn+1)|.
This implies that {|D(jn, jn+1)|}∞n=1 is a monotone and bounded above sequence,
it is convergent and converges to a point α, i.e

lim
n→∞

|D(jn, jn+1)| = α ≥ 0.

If α = 0. Then we have done but if α > 0, then from (2.1) we have

|D(jn+1, jn+2)| ≤ β(N(jn, jn+1))N(jn, jn+1).

This implies that
|D(jn+1, jn+2)|
N(jn, jn+1)

≤ β(N(jn, jn+1)).

Taking limit we have
lim
n→∞

β(N(jn, jn+1)) = 1.

Since β ∈ S and N(jn, jn+1) = |D(jn, jn+1)| , limn→∞ |D(jn, jn+1)| = 0, which
entails α = 0.
Hence

lim
n→∞

D(jn, jn+1) = 0. (2.2)

Similarly we can prove that

lim
n→∞

D(jn, jn) = 0.

Now since
dD(jn, jn+1) = D(jn, jn+1)−D(jn, jn)

we deduce that
lim
n→∞

dD(jn, jn+1) = 0 for all n ≥ 1.

Now, we show that sequence {jn} is Cauchy sequence (M,dsD). Suppose on contrary
that {jn} is not a Cauchy sequence. Then given ε > 0, we will construct a pair of
subsequences {jmr

} and {jnr
} violating the following condition for least integer nr

such that mr > nr > r, where r ∈ N
dD(jmr

, jnr
) ≥ ε (2.3)

In addition, upon choosing the smallest possible mr, we may assume that

dD(jmr
, jnr−1

) < ε. (2.4)

By the triangle inequality, we have

ε ≤ dD(jmr , jnr )

≤ dD(jmr , jnr−1) + dD(jnr−1 , jnr )

< ε+ dD(jnr−1 , jnr ).

That is,
ε < ε+ dD(jnr−1

, jnr
) (2.5)

for all r ∈ N. In the view of (2.5), (2.11), we have

lim
r→∞

dD(jmr
, jnr

) = ε. (2.6)

Again using triangle inequality, we have

dD(jmr
, jnr

) ≤ dD(jmr
, jmr+1

) + dD(jmr+1
, jnr+1

) + dD(jnr+1
, jnr

).
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and

dD(jmr+1
, jnr+1

) ≤ dD(jmr+1
, jmr

) + dD(jmr
, jnr

) + dD(jnr
, jnr+1

).

Taking limit as r → +∞ and using (2.11) and (2.6), we obtain

lim
r→+∞

dD(jmr+1
, jnr+1

) = ε. (2.7)

Now from contractive condition (2.1), we have

|D(jnr+1
, jmr+2

)| = |D(T (jnr
), T (jmr+1

))|,
≤ β(N(jnr

, jmr+1
))N(jnr

, jmr+1
).

We conclude that
|D(jnr+1

, jmr+2
)|

N(jnr
, jmr+1

)
≤ β(N(jnr

, jmr+1
)).

By using (2.11), letting r → +∞ in the above inequality, we obtain

lim
r→∞

β(N(jnr
, jmr+1

)) = 1. (2.8)

Since β ∈ S and N(jnr
, jmr+1

) = |D(jnr
, jmr+1

)| , limr→∞ |D(jnr
, jmr+1

)| = 0 and
hence limr→∞ dD(jnr

, jmr+1
) = 0 < ε, which contradicts our assumption (2.3).

Arguing like above , we can have limr→∞ dD(jmr
, jnr+1

) = 0 < ε. Hence {jn} is a
Cauchy sequence in (M,dsD) that is limn,m→∞ dsD(jn, jm) = 0. Since (M,dsD) is a
complete metric space, {jn} converges to a point υ in M , i.e limn→∞ dsD(jn, υ) = 0,
then from Lemma 1.6, we get

lim
n→∞

D(υ, jn) = D(υ, υ) = lim
n,m→∞

D(jn, jm) = 0. (2.9)

We are left to prove that υ is a fixed point of T . For this purpose we have to deal
with two cases:

Case 1: If T is continuous.

Then,

υ = lim
n→∞

jn = lim
n→∞

Tn(j0) = lim
n→∞

Tn+1(j0) = T ( lim
n→∞

Tn(j0)) = T (υ).

Hence υ = T (υ) that is υ is fixed point of T .

Case 2: If {jn} is a non increasing sequence in M such that {jn} → υ, then
jn � υ ∀ n.

We note that D(υ, T (υ)) ≥ 0. Indeed D(υ, T (υ)) − D(υ, υ) = dD(υ, T (υ)) ≥ 0.
For the case when D(υ, T (υ)) > 0, contractive condition (2.1) and (2.9) implies

|D(jn+1, T (υ))| = |D(T (jn), T (υ))|.
≤ β(N(jn, υ))N(jn, υ).

lim
n→∞

|D(jn+1, T (υ))| ≤ lim
n→∞

β(N(jn, υ))N(jn, υ).

Thus D(υ, T (υ)) < D(υ, T (υ)).

A contradiction. This shows that D(υ, T (υ)) = 0. So from (D1) and (D2), we
deduce that υ = T (υ) and hence υ is a fixed point of T . �
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Note that in the above result fixed point may not be unique, in order to prove
uniqueness of the fixed point, we need some more conditions and for this purpose
we have following Theorem.

Theorem 2.4. Let (M,�, D) be an ordered complete dualistic partial metric space.
Let T : M →M be a mapping satisfying all the conditions of Theorem 2.3. Besides,
if for each j, k ∈M there exists z ∈M which is comparable to both j and k. Then
T has a unique fixed point.

Proof. Following the proof of Theorem 2.3, we are only left to prove the uniqueness
of the fixed point υ. Let v1 be another fixed point of T then T (v1) = v1. Two cases
arises, first if υ, v1 are comparable then from (2.1) it follows that υ = v1. Secondly,
if υ, v1 are not comparable then there exists z ∈ M which is comparable to both
υ, v1 that is υ � z and v1 � z. Since T is dominated mapping, we deduce that
υ � Tn(z) and v1 � Tn(z). Moreover consider |D(υ, Tn(z))| = |D(Tn(υ), Tn(z))|
and by contractive condition (2.1) we obtain,

|D(Tn(υ), Tn(z))| ≤ β(N(Tn−1(υ), Tn−1(z)))|D(Tn−1(υ), Tn−1(z))|. (2.10)

This implies

|D(υ, Tn(z))| ≤ |D(υ, Tn−1(z))|.
It shows that {|D(υ, Tn(z))|}∞n=1 is a non-negative and decreasing sequence, so for
λ ≥ 0 we get

lim
n→∞

|D(υ, Tn(z))| = λ.

We claim that λ = 0. Suppose on contrary that λ > 0.
By passing to subsequences, if necessary, we may assume that

lim
n→∞

β(N(υ, Tn(z))) = γ.

Then by (2.10) we have λ ≤ γλ⇒ γ = 1. Since β ∈ S, we have

lim
n→∞

|D(v, Tn(z))| = 0.

Hence

lim
n→∞

D(v, Tn(z)) = 0.

Similarly, we can prove that

lim
n→∞

D(v1, T
n(z)) = 0.

Finally by D4 we have

D(v, v1) ≤ D(v, Tn(z)) +D(Tn(z), v1)−D(Tn(z), Tn(z)),

≤ D(v1, T
n(z)) +D(Tn(z), v)−D(Tn(z), v)−D(v, Tn(z)) +D(v, v).

Taking limit we get D(v, v1) ≤ 0. Since dD(v, v1) = D(v, v1) − D(v1, v1), which
implies D(v, v1) ≥ 0. Hence D(v, v1) = 0. From D1 and D2 we deduce that is
v = v1 which proves the uniqueness of v. �

For monotone mappings we present following result.

Theorem 2.5. Let (M,�) be a partially ordered set and suppose that (M,D) is a
complete dualistic partial metric space and let T : M →M be a mapping such that,

(1) T is an increasing map with j0 � T (j0) for some j0 ∈M .
(2) T is a generalized dualistic contraction of rational type.
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(3) either T is continuous or M is such that if an increasing sequence {jn} →
u ∈M then jn � u.

Besides, if for each j, k ∈ M there exists z ∈ M which is comparable to both j
and k. Then T has a unique fixed point υ ∈ M and the Picard iterative sequence
{Tn(j0)}n∈N converges to υ with respect to τ(dsD), for any j0 ∈ M . Moreover,
D(υ, υ) = 0.

Proof. We begin by defining a Picard iterative sequence in M by jn = T (jn−1)
for all n ∈ N. Given j0 � T (j0) = j1 so j0 � j1. Since T is increasing, j0 � j1
implies T (j0) � T (j1) that is j1 � j2, this in turn gives T (j1) � T (j2) which implies
j2 � j3. Continuing in a similar way we get

j0 � j1 � j2 � j3 � ... � jn � jn+1....

Since jn � jn+1 for each n ∈ N, from contractive condition (2.1) we have

|D(jn+1, jn+2)| = |D(T (jn), T (jn+1))|,
≤ β(N(jn, jn+1))N(jn, jn+1),

implies |D(jn+1, jn+2)| ≤ |D(jn, jn+1)| ∀ n ≥ 1.

This implies that {|D(jn, jn+1)|}∞n=1 is a monotone and bounded below sequence,
it is convergent and converges to a point α, i.e

lim
n→∞

|D(jn, jn+1)| = α ≥ 0.

If α = 0. Then we have done but if α > 0, then from (2.1) we have

|D(jn+1, jn+2)| ≤ β(N(jn, jn+1))N(jn, jn+1).

This implies that
|D(jn+1, jn+2)|
N(jn, jn+1)

≤ β(N(jn, jn+1)).

Taking limit we have

lim
n→∞

β(N(jn, jn+1)) = 1.

Since β ∈ S, limn→∞ |D(jn, jn+1)| = 0, which implies α = 0.
Hence

lim
n→∞

D(jn, jn+1) = 0. (2.11)

Similarly, we can prove that

lim
n→∞

D(jn, jn) = 0.

and the desired conclusion follows arguing like in the proofs of Theorem 2.3 and
Theorem 2.4. �

A natural question that can be raised is, whether the contractive condition in the
statements of Theorems 2.3 and 2.5 can be replaced by the contractive condition
in Theorems 1.1 and 1.2, The following easy example provides a negative answer
to such a question.

Example 2.6. Consider the complete dualistic partial metric (R, D∨) and the map-
ping T0 : R→ R defined by,

T0(j) =

{
0 if j 6= 0
−1 if j = 0

.
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It is easy to check that the contractive condition in the statement of Theorems 1.1
and 1.2 holds

D∨(T0(j), T0(k)) ≤ β(N+
∨ (j, k))N+

∨ (j, k)

for all j, k ∈ R, where

N+
∨ (j, k) = max

{
D(j, k),

D(k, T0(k))(1 +D(j, T0(j))

1 +D(j, k)

}
.

However, T0 does not have a fixed point. Observe that T0 does not satisfy the
contractive condition in the statements of Theorem 2.3 and Theorem 2.5. Indeed,

1 = |D∨(−1,−1)| = |D∨(T0(0), T0(0))| > β(N∨(0, 0))N∨(0, 0) = 0.

The analogues of Theorems 2.3 and 2.5 are given below without proofs as they
can be obtained easily by following proofs of above theorems.

Theorem 2.7. Let (M,�) be a partially ordered set and suppose that (M,D) is a
complete dualistic partial metric space and let T : M →M be a mapping such that,

(1) T is a dominating map.
(2) T is a generalized dualistic contraction of rational type.
(3) either T is continuous or M is such that if an increasing sequence {jn} →

u ∈M then jn � u.

Besides, if for each j, k ∈ M there exists z ∈ M which is comparable to both j
and k, then T has a unique fixed point υ ∈ M and the Picard iterative sequence
{Tn(j0)}n∈N converges to υ with respect to τ(dsD), for any j0 ∈ M . Moreover,
D(υ, υ) = 0.

Theorem 2.8. Let (M,�) be a partially ordered set and suppose that (M,D) is a
complete dualistic partial metric space and let T : M →M be a mapping such that,

(1) T is a decreasing map with T (x0) � x0.
(2) T is a generalized dualistic contraction of rational type.
(3) either T is continuous or M is such that if a decreasing sequence {jn} →

u ∈M then jn � u.

Besides, if for each j, k ∈ M there exists z ∈ M which is comparable to both j
and k, then T has a unique fixed point υ ∈ M and the Picard iterative sequence
{Tn(j0)}n∈N converges to υ with respect to τ(dsD), for any j0 ∈ M . Moreover,
D(υ, υ) = 0.

Observations:
If we set D(j, j) = 0 in Theorem 2.5, we retrieve Theorem 1.2 as a particular case.
If we set D(j, k) ∈ R+

0 in Theorems 2.5 and 2.3, we retrieve corresponding theorems
in partial metric spaces.

Following theorem generalizes Theorem 2.3 presented by Valero in [11].

Corollary 2.9. Let (M,�) be a partially ordered set and suppose that (M,D) is a
complete dualistic partial metric space and let T : M →M be a mapping such that,

(1) T is an increasing map with j0 � T (j0) for some j0 ∈M .
(2) T satisfies |D(T (j), T (k)) ≤ β(|D(j, k)|)|D(j, k)|, for all comparable j, k ∈

M .
(3) either T is continuous or M is such that if an increasing sequence {jn} →

u ∈M then jn � u.
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Then T has a fixed point.

Proof. Set N(j, k) = |D(j, k)| in (2.1). Proof follows from Theorem 2.5 �

3. application to integral equations

In this section we shall show how Theorem 2.5 can be applied to prove the
existence of solution of integral equation (3.1).
Let Φ represents the class of functions φ : [0,∞)→ [0,∞) with properties;

(1) φ is increasing.
(2) For each t > 0, φ(t) < t

(3)
∫ 1

0
φ(t) dt ≤ φ(

∫ 1

0
t dt).

(4) β(t) = φ(t)
t ∈ S.

For example, φ(t) = 1
5 t, φ(t) = t

t+1 are elements of Φ .

Let us consider the following integral equation:

j(w) = g(w) +

∫ 1

0

G(w, s, j(s)) ds ∀ w ∈ [0, 1]. (3.1)

To show the existence of solution of integral equation (3.1), we need following lemma

Lemma 3.1. Let B = B̄(0, ρ) = {j : j ∈ L2([0, 1],R) ; ‖j‖ ≤ ρ}.
Assume following hypotheses are satisfied:

(1) g ∈ L2([0, 1],R)

(2) G : [0, 1]× [0, 1]× L2([0, 1],R)→ R.

(4) |Gn(w, s, j)| ≤ f(w, s) + υ|j| where f ∈ L2([0, 1]× [0, 1]) and υ < 1
2 .

Then operator T defined by

(Tk)(w) = g(w) +

∫ 1

0

G̃(w)(k)(s) ds

satisfies T (B) ⊂ B.

Proof. We begin by defining the operator G̃(w)(k)(s) = Gn(w, s, k(s)).

‖Tj‖2L2([0,1],R) =

∫ 1

0

|Tj(w)|2 dw.

=

∫ 1

0

(|g(w) +

∫ 1

0

G̃(w)(j)(s) ds|2) dw.

≤ 2

∫ 1

0

|g(w)|2 dw + 2

∫ 1

0

∫ 1

0

|G̃(w)(j)(s)|2 dsdw.

≤ 2

∫ 1

0

|g(w)|2 dw + 2

∫ 1

0

∫ 1

0

|f(w, s) + υ|j(s)||2 dsdw

≤ 2

∫ 1

0

|g(w)|2 dw + 4

∫ 1

0

∫ 1

0

|f(w, s)|2 dsdw

+ 4υ2‖j‖2L2([0,1],R).

≤ 2

∫ 1

0

|g(w)|2 dw + 4

∫ 1

0

∫ 1

0

f2(w, s) dsdw + 4υ2ρ2.
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Since υ < 1
2 , choose ρ such that

2

1− 4υ2

∫ 1

0

|g(w)|2 dw +
4

1− 4υ2

∫ 1

0

∫ 1

0

f2(w, s) dsdw ≤ ρ2

This implies that T (j) ∈ B, hence T (B) ⊂ B. �

Now we are in position to state our result regarding application

Theorem 3.2. Assume that the following hypotheses are satisfied:

(1) The conditions supposed in Lemma 3.1.
(2) As n→∞ Gn(w, s, j)−Gn(w, s, k) ≤ φ(j−k), for all comparable j, k ∈M ,

Then integral equation (3.1) has a solution.

Proof. Let M = L2([0, 1],R) and D(j, k) = d(j, k) + cn for all j, k ∈ M , where
d(j, k) = ‖j − k‖M and {cn} is a sequence of real numbers satisfying, |cn| → 0 as
n→∞. Suppose that T : M →M be a mapping defined by

(Tk)(w) = g(w) +

∫ 1

0

G̃(w)(k)(s) ds.

We introduce a partial ordering on M , setting

u1 � u2 ⇐⇒ u1(w) ≤ u2(w) for all w ∈ [0, 1].

Then (M,�, D) is a complete ordered dualistic partial metric space. Notice that
T is well-defined and (3.1) has a solution if and only if the operator T has a fixed
point. Precisely, we have to show that our Theorem 2.5 is applicable to the operator
T . Then, for all comparable j, k ∈M , we write

|D(T (j), T (k))|2 = |d(T (j), T (k)) + cn|2

≤ |d(T (j), T (k))|2 + |cn|2 + 2|d(T (j), T (k))||cn|
≤ ‖T (j)− T (k)‖2 + |cn|2 + 2|d(T (j), T (k))||cn|

≤
∫ 1

0

(

∫ 1

0

G̃(w)(j)(s)− G̃(w)(k)(s) ds)2dw

+ |cn|2 + 2|d(Tj, Tk)||cn|

≤
∫ 1

0

(

∫ 1

0

Gn(w, s, j)−Gn(w, s, k) ds)2dw + |cn|2

+ 2|d(T (j), T (k))||cn|

≤
∫ 1

0

(

∫ 1

0

φ(j(s)− k(s)) ds)2dw as n→∞

≤ φ2(

∫ 1

0

(j(s)− k(s))2 ds).

It follows |D(T (j), T (k))|2 ≤ [φ(|D(j, k)|)]2

|D(T (j), T (k))| ≤ φ(|D(j, k)|)

≤ φ(N(j, k)) =
φ(N(j, k))

N(j, k)
N(j, k)

This implies
|D(T (j), T (k))| ≤ β(N(j, k))N(j, k)

. Hence T satisfies all the conditions of Theorem 2.5, so it has a fixed point and
hence (3.1) has a solution. �



FIXED POINT THEOREM WITH APPLICATION 35

Acknowledgments. The authors would like to thank the anonymous referee for
his/her comments that helped us improve this article.

References

[1] I.Altun and A.Erduran, Fixed point theorems for monotone mappings on partial metric
spaces, Fixed Point Theory and Applications, Vol.2011, Article ID 508730, 10 pages, 2011.

[2] A. Amini-Harandi and H. Emami, A fixed point theorem for contraction type maps in partially

ordered metric spaces and application to ordinary differential equations, Nonlinear Anal.
72(2010), 2238-2242.

[3] M. Arshad, M. Nazam and I. Beg, Fixed point theorems in ordered dual-
istic partial metric spaces, Korean J. Math. 24 (2016), No. 2, pp. 169-179

http://dx.doi.org/10.11568/kjm.2016.24.2.169

[4] M. Arshad , A. Shoaib, M. Abbas, A. Azam, Fixed Points of a pair of Kannan Type Mappings
on a Closed Ball in Ordered Partial Metric Spaces, Miskolc Mathematical Notes, 14(3),

2013,769-784

[5] M. Geraghty, On contractive mappings, Proc. Am. Math. Soc. 40 (1973), 604-608.
[6] S.G.Matthews, Partial Metric Topology, in proceedings of the 11th Summer Conference on

General Topology and Applications, Vol.728,pp.183-197, The New York Academy of Sciences,

August, 1995.
[7] M. Nazam, M. Arshad, On a fixed point theorem with application to integral equations, Int.

J. Anal. 2016, Art. ID 9843207 (2016).

[8] M. Nazam, M. Arshad, M. Abbas, Some fixed point results for dualistic rational contractions,
Appl. Gen. Topol. 17 (2016), 199-209.

[9] M. Nazam, M. Arshad, C. Park Fixed point theorems for improved α-Geraghty contractions
in partial metric spaces, J. Nonlinear Sci. Appl. Vol. 9 (2016), 4436-4449.

[10] S.J.O’Neill, Partial Metric, Valuations and Domain Theory. Annals of the New York Acad-

emy of Science, Vol.806,pp.304-315,1996.
[11] S.Oltra and O.Valero, Banach’s fixed point theorem for partial metric spaces ,Rend. Ist. Mat.

Univ. Trieste 36(2004),17-26.

[12] V.La Rosa, P. Vetro.Fixed points for Geraghty-contractions in partial metric spaces J. Non-
linear Sci. Appl. 7 (2014), 1-10.

Muhammad Nazam

Department of Mathematics, International Islamic University Islamabad, Pakistan

E-mail address: nazim.phdma47@iiu.edu.pk

Muhammad Arshad

Department of Mathematics, International Islamic University Islamabad, Pakistan
E-mail address: marshadzia@iiu.edu.pk

Aftab Hussain
Department of Mathematics and Statistics, International Islamic university, Islamabad

Pakistan, Department of mathematical sciences, Lahore Leads University, Lahore, Pak-

istan
E-mail address: aftabshh@gmail.com


	1. Introduction and preliminaries
	2. The results
	3. application to integral equations
	Acknowledgments

	References

