JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS
ISSN: 2217-4303, URL: HTTP://ILIRIAS.COM/JIASF
VOLUME 7 ISSUE 4(2016), PAGES 241-252.

A CLASS OF MIXED VARIATIONAL-LIKE INEQUALITIES AND
EQUILIBRIUM PROBLEMS IN BANACH SPACES

GAYATRI PANY, R. N. MOHAPATRA, SABYASACHI PANI

ABSTRACT. We use generalized weakly relaxed n—a monotonicity to analyze
mixed variational-like inequalities, involving a nonlinear bifunction, in a Ba-
nach space. Existence of the solution to the problem is established using
KKM theorem. An iterative algorithm is obtained using auxiliary principle
technique. Also strong convergence of the iterates to the exact solution is es-
tablished. We have applied our results to corresponding equilibrium problems.

1. INTRODUCTION

Let K be a nonempty compact convex subset of a real reflexive Banach space F
with dual space E*. f N: EXE —- FE* b: EXFE—Randn: K x K — E, then
the mixed variational-like inequality problem (in short MVLIP) is to find,

w € K : (N(w,y),n(v,w)) + b(w,v) — b(w,w) > 0,Vy,v € K. (1.1)

This kind of problem was studied earlier under different kinds of generalized
monotonicities in Banach or Hilbert space settings. The concept of monotonicity
and its generalizations have been very useful in the study of the property of the
solution set and convergence analysis of the approximate solutions to the exact
solution [14] [19]. However, in order to analyze a wider range of real life problems,
monotonicity sometimes becomes a stronger assumption to be satisfied. This fact
motivated the study of different kinds of generalized monotonicities with the aim to
weaken the monotonicity condition, involved in the variational or variational-like
inequality problems. In this paper we study the problem under generalized
weakly relaxed n—a monotonicity, which is a weaker assumption than monotonicity,
relaxed n—a monotonicity and generalized relaxed a-monotonicity, studied earlier.

MVLIP (1.1) was studied by Huang and Deng [9] for set-valued maps under
strongly 7—a monotonicity in Hilbert space and they provided an iterative algo-
rithm using auxiliary principle technique. There are substantial number of results
on existence and uniqueness of variational inequalities under Hilbert space setting.
Generalizing the concepts to Banach space, Fang and Huang [7] studied variational-
like inequalities introducing a new concept of relaxed n—« monotonicity. Later,
this work was extended by Bai et al. [2], under relaxed n—a pseudomonotonicity.
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Kutbi and Sintunavarat [I0] proved some existence results for variational-like in-
equalities involving a single operator using weakly relaxed 17—« monotone mapping.
Recently Mahato and Nahak [T1] introduced the concepts of the generalized relaxed
a-monotone and generalized relaxed a-pseudomonotone mappings for equilibrium
problems, closely related to variational inequality. In all these studies [2] [7, [10]
the underlying map is a single map from the associated Banach or Hilbert space
FE to its nonempty compact convex subset K. Very recently Alleche and Radulescu
[1] investigated set-valued equilibrium problems while focusing on weakening the
semi-continuity. All these approaches mainly emphasize on qualitative aspects,
involving the study of the property of the solution set, while the thrust on the
numerical approach is low.

Motivated by these works, we introduce the concept of generalized weakly relaxed
1n—a monotonicity, which can be regarded as a proper generalization of monotonic-
ity, weakly relaxed n—a monotonicity and generalized relaxed a-monotonicity. We
have extended the results of [2], [10] and [II] to nonlinear mixed variational-like
inequality under generalized weakly relaxed n—a monotonicity. Along with the
qualitative aspect, that is, the study of existence of solution, we study the numer-
ical aspect and propose an iterative algorithm to approximate the exact solution
using auxiliary principle technique which is due to Glowinski et al. [I7]. Following
the ideas of Ding [5], we analyze the convergence criteria for the proposed iterative
algorithm. The results obtained are extended to corresponding equilibrium problem
using the concept of trifunction variational inequality studied in [3].

2. PRELIMINARIES

Throughout the paper we assume that K is a nonempty compact convex subset
of a real reflexive Banach space E and E* be its dual space.

Definition 1. If N: ExE - E*, n: KxK - FE, a: EXE —- R, t >0,z € E and
p > 1 is a constant, then N is said to be generalized weakly relaxed n—a monotone if
(N(v,y)—N(w,y),n(v,w)) > a(v,w), Yv,w € K, where a(w,w) = 0, }gr(l) %a(tv—k
(1—-tw,w)=0.

Remark 1. It follows from the above definitions that,

d
(i) If a(v,w) = B(v — w), with %ir%ﬂ(tz) =0 and %in(l) ﬁﬁ(tz) = 0, generalized
— —
weakly relazed n—a monotonicity reduces to weakly relaxed n—a monotonicity.
This was studied in the context of mized variational-like inequality in [15] and
for variational-like inequality involving a single operator in [10].
d
(i) As o(w,w) =0, }irr(l) aa(tv + (1 —t)w,w) = 0, then using L’Hospital’s rule,
—

we get }ir% w = 0 and hence it reduces to generalized relaxed n—a
—

monotonicity ([11]).
(iii) It reduces to relaxed n—a monotonicity if a(v,w) = B(v — w), with f(tz) =
tPB(2), fort >0,z € E.
(iv) If « =0, then N becomes n-monotone, i.e.,
<N(Uay) - N(way),n(v7w)> >0
and if n = v —w, then N is said to be simply monotone, i.e.,
<N(”U,y) - N(way)vv 7w> > 0.
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So it follows that monotonicity —> relaxed n—a monotonicity —> weakly re-
laxed n—a monotonicity = generalized weakly relaxed n—a monotonicity. But
the converse is not in general true. Here is an example that shows a mapping is
generalized weakly relaxed monotone, but not weakly relaxed monotone.

Example 2. We consider, T : [O, g] = R, Tv =sinv, n(v,w) =v—w, alv,w) =

d
—(sinv—sinw)?, then lim a(tv+ (1 —t)w,w) = 0 and tlim aa(tv—i—(l—t)w,w) = 0.

t—0 —0
(Tv — Tw,n(v,w)) = (sinv — sinw, v — w) > —(sinv — sinw)? = a(v, w).
So T is generalized weakly relaxed n—a monotone, but not weakly relaxed n—a mono-

tone as —(sinv — sinw)? is not a function of v — w.

The following is a list of definitions and results that will be frequently used in
the sequel.

Definition 2. If N : ExXE — E* andn: KxK — E*, then N is n-hemicontinuous
if f(t) = (N(w+t(v—w)),n(v,w)) is continuous at 0, where f : [0,1] = (—o0, +00).

Definition 3. N and n are said to have 0-diagonally concave relation, if the func-
tion ¢ : K x K — R defined by

6w, v) = (N(w,v), 7w, v))
is 0-diagonally concave in v, that is, for any finite set {vy,- -+ , v} C K and for any
convex combination of v;, i Aip(w,v;) < 0. N and n are said to have 0-diagonally
convez relation on K if —ﬁland n have 0-diagonally concave relation.
Definition 4. N is n-monotone with respect to first argument if

(N (wq,v) = N(ws,v),n(w,v)) >0, Yw,v € K.
Definition 5. N is n-antimonotone with respect to second argument if

(N (w,v1) = N(w,v2),n(w,v)) <0, Yw,v € K.

Definition 6. A mapping F : K — E* is KKM mapping if, for any {1, - ,2,} C
K, co{zy, -+ ,xz,} C Ui, F(x;), where co{zy,--- ,x,} denotes the convex hull of
L1, T2+ ,Tn.

n n
Definition 7. If S = {z1, -+ ,xn}, co{z1, - ,xn} = { Sz Y a; = 1,Va; >
i=1 i=1

o) )

Definition 8. A function f : K — (—o0,+00] is lower semicontinuous at xg if
f(il?o) S hm anm—)xof(m)

Definition 9. An operator T : K — E* is Lipschitz continuous if there exists
a >0, such that ||Tx — Ty|| < allz —yl|, ¥V z,y € K.

Definition 10. T is n-coercive with respect to a proper function f : K — (—o0, +00]
if there exists vy € K such that
(T — Tao,n(z,20)) + f(2) — f(0)
l[n(z, o)

— Q.
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Now, we cite two Lemmas, which are essential for establishing the existence
results for the MVLIP (1.1) and the auxiliary variational inequality problem (4.2)
respectively.

Lemma 2.1 ([6]). If M is a nonempty subset of a Hausdor{f topological vector space
X, F: M — 2% is a KKM mapping, F(x) is closed in X, Yz € K and compact for

some x € K, then (¢, F(x) # ¢.
Lemma 2.2 ([]). Let K be a nonempty convex subset of a topological vector space
and let ¢ : K x K — R be such that:
(i) for each x € K,y — ¢(x,y) is lower semicontinuous on each nonempty com-
pact subset of K,

(i1) for each nonempty finite set {x1, -+ ,xm} C K and for eachy = > \xi(A; >
i=1

0 Z )\ = ].) m2n1<z<m¢(xz;y) < 0

=
(4ii) there exists nonempty compact convex subset Xo of K and a nonempty com-

pact subset D of K such that for each y € K\D, there is an x € co(XoU{y})
with ¢(z,y) > 0.
Then there exists an § € D such that ¢(z,§) <0 for all x € K.

3. RESULTS

In order to prove the existence of solution to the MVLIP , we first pro-
ceed to show that the problems and (| are equivalent. Next, using KKM
technique and Lemma [2 solvablhty for the MVLIP is established. Solvability is
also established in the case, where K is unbounded with an additional condition of
n-coercivity of the mapping N, in Theorem

3.1. Existence result.

Theorem 3. Let N : E x E — E* be n-hemicontinuous and generalized weakly
relazed n—a monotone and b : ExXE — R be a convex lower semicontinuous function
in second argument, such that,

(i) n(w,w) =0,Yw € K,
(i) v — (N(w,y),n(v,w)) is convex for any w,y € K,
Then the following problems are equivalent:
w € K, (N(w,y),n(v,w)) + b(w, v) = b(w, w) = 0,Vv € K, (3.1)
w € K, (N(v,y),n(v,w)) + blw,v) — bw, w) > a(v,w),Vv € K. (3.2)
Proof. Let w € K be a solution of (3.1). As N is generalized weakly relaxed n—a
monotone, we have,
(N(v,y),n(v,w)) + b(w,v) = b(w, w) = (N(w,y),n(v,w)) + a(w — v) + b(w, v) — b(w, w)
> a( w),Yv € K.
Hence w is a solution of (3.2) and = . Conversely let w € K be a
solution of (3.2)). Let vy = (1 — t)w +tv,t € (0,1). Sovs € K. Asw € K is a
3.2

solution of (3.2)), we have,
<N(Ut7 y)7 U(Uty ’LU)> + b(w7 Ut) - b(wa ’LU) > (X(Ut, U)), and
b(w, v) — b(w, w) < t(b(w,v) — b(w,w)).
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Using these results, we get,

(N(w+t(v—w),y),n(v,w)) + bw,v) — blw,w) > (v, w)

Vo € K.

Since N is n-hemicontinuous and llH(l) j a(tv + (1 — t)w,w) = 0, letting ¢ — 0 and
applying L’Hospital’s rule, we get,

(N(w,y),n(v,w)) + b(w,v) — b(w,w) > 0,Yv € K.
This completes the proof. O
Theorem 4. If N : E x E — E* is n—hemicontinuous and generalized weakly

relaxed n—a monotone and b : EX E — R is a convex lower semicontinuous function
in second argument and the following assumptions

(i) n(v,v) =0, Yv € K,
(ii) v = (N(w,y),n(v,w)) is convex and lower semicontinuous for any w,y € K,
(ii) For any vg,vg converging to v, a(v) < lim inf a(vg),
hold, then problem 1s solvable.
Proof. Let F,G : K — 2F be defined by,
F(v) ={w € K, (N(w,y),n(v,w)) + b(w,v) — b(w, w) = 0}, Vv € K,
G(v) ={w e K, (N(v,y),n(v,w)) + b(w,v) — blw,w) > a(v,w)},Vv € K.
We claim that F' is a KKM mapplng, if not, then there exists {vy, - ,0,} C K
and t; > 0,9 =1,2,--- ,n, such that, Zt =1, v= Ztvﬁéul 1 F(v;).

Then by definition of F, (N (v,y), n(vz, )>+b(w v;)— b( v) <0,fori=1,2---,n
By our assumption,

0 == <N(U7y)7n(v’ U)>

= <N(Ua 1/)777(2 tiviav» < Zti<N(U7 9)777(% U)>

<Zt (b(w,v) — b(w,v;))

v) — Ztib(w,vi)
< b(w,v) — wa, v) = 0.

This is a contradiction. So F' is a KKM mapping. We now claim that F(v) C
G(v),Yv € K. Let w € F(v), then

(N (w, ), (v, w)) + b(w,v) — b(w, w) > 0, for any v € K.

Using generalized weakly relaxed 17—a monotonicity of N, we have w € G(v). So
F(v) € G(v),Yv € K. So G is a KKM mapping. As « is weakly lower semicon-
tinuous, G(v) is weakly closed. v — (N(w,y),n(v,w)) and b are convex and lower
semicontinuous and hence weakly lower semicontinuous. As K is bounded closed
and convex in the reflexive Banach space F, it is weakly compact. Since G(v) is
weakly closed for all v € K it is weakly compact and hence the family {G(v)} has



246 G. PANY, R. N. MOHAPATRA AND S. PANI

finite intersection property, that is, (), G(v) # ®. So conditions of Lemma
are satisfied, hence we have,

() Flv) = () Gv) # .
veEK veK
So there exists w € K such that

(N(w,y),n(v,w)) + b(w,v) — blw,w) > 0,Yv € K.

Next we prove the existence result for an unbounded set K.

Theorem 5. If N : E x E — E* is n-hemicontinuous and generalized weakly
relaxed n—a monotone, b : E X E — R is a convex lower semicontinuous functional
in second argument, K is a nonempty closed conver unbounded subset of E and the
following assumptions

(i) N is n-coercive with respect to b in the second argument, that is, for wy €
K’ [<N(way) - N(wO’y)7n(v7w0)> + b(w,v) - b(wO’U)]/Hn(U’wO)” — 00, as
(i) n(w,v) +n(v,w) =0, Vw,v € K,
(ii1) v = (N(w,y),n(v,w)) is conver and lower semicontinuous for any w,y € K,
(iv) for any vg,vg converging to v, a(v) < lim inf a(vg),
hold, then problem is solvable.

Proof. Consider the problem, find w, € K N B, such that
(N (wr,y),n(v,wy)) + blwy,v) — b(w,,w,) >0, Yo € KN B, (3.3)

where B, = {v € E: |Jv|| <r}.
By Theorem {4} (3.3) has a solution w, € K N B,.. Choosing ||wg| < 7, we can
put wy in place of v in (3.3), and hence,

(N (wr,y), n(wo, wy)) + b(w,, wo) — b(w,, w,) > 0.
Now,
(N(wy, ), n(wo, wy)) + b(wy, wo) — b(wy, wy)
= —(N(wr,y), n(wr, wo)) + (N(wo, y), n(wo, wr)) + (N(wo, y), n(wy, wo))
+ b(wy, wo) — b(wy, w,)
= —(N(wp,y) = N(wo,y), n(wy, wo)) + b(wr, wo) — b(wy, wy) + (N (wo, y), n(wo, wr))

—(N(wy,y) — N(wo,y), n(w,, wo)) + blw,, w,) — blw,, wp)
( l|n(wy, wo)|| + ||N(w0,y)||>.

IN

[In(wr, wo)|

If ||wy]| = r and r — oo, then by n-coercivity of N with respect to b in the second
argument, the above inequality reduces to

<N(wray)= 77(1U07wr)> + b(wmwo) - b(wmwr) < 0.

This is a contradiction as (N(wy,y),n(wo, w;)) + b(w,, wy) — blwy, wy,) > 0. So
|lwy|| < r. Now for any v € K, we choose 0 < ¢ < 1, such that,

wy + €(v —w,) € KN B,.
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By assumption (447) and convexity of b, we have from equation ,

0 < (N(wr,y), n(wr + €(v — wr), wr)) + blw, + €(v —wy)) — b(wy, wy)
< (1 = e)(N(wr,y), n(wr, wy)) + €N (wr, y), (v, wr)) + (1 = €)b(wr, wy) + eb(v, wy)
— b(w,., w,.)
= e(N(wy,y),n(v,w,)) + eb(w,,v) — eb(w,, w;).

So,
(N(wy,y),n(v,wr)) + b(wy, v) — b(w,, w,) > 0,Vy € K
and w, € K is a solution of problem (1.1]). This completes the proof. O

4. ITERATIVE ALGORITHM AND CONVERGENCE ANALYSIS

In this section, using auxiliary principle technique we formulate an iterative algo-
rithm that generates approximate solutions to the nonlinear mixed variational-like
inequality problem . For this purpose, we first formulate an auxiliary minimiz-
ing problem and then characterize it by an auxiliary variational inequality problem.
Existence of solution to the latter is established in Theorem [fl Formulation of the
iterative algorithm is mainly based on this existence result.

The differentiable convex functional o : F — R, involved in the formulation of
the auxiliary minimizing problem is considered as an auxiliary differentiable convex
functional. The auxiliary minimizing problem is defined as follows:

minye g {a(w) + (pN (v, y),n(w,v)) — (o' (v), w) + pb(v, w)}, (4.1)

where w € E,v € K and p is a positive constant. If w — (N(v,y),n(w,v)) is convex,
then is equivalent to following auxiliary variational inequality problem in the
sense that solution to both the problems are the same. The auxiliary variational
inequality problem is given by,

(a'(w) =/ (v),u —w) > —p(N(v,y),n(u, w)) + pb(v,w) — pb(v,u), for all u € K.
(4.2)
Note: If w = v, then v is a solution of (L.1)).
Keeping in view these results we propose an iterative algorithm as follows:

(i) Let vg be the initial approximation for n = 0.
(ii) At the nth step solve the auxiliary minimizing or auxiliary variational inequal-
ity problem with v* = v,,. Let v,41 be the solution.
(iii) If |lop+1 — vnll < € € >0, stop, otherwise repeat (7).
Next we prove the result that guarantees the existence of solution of (4.1)) or (4.2]).

Theorem 6. Let N : EXx E — E*, b: E X E — R be n-hemicontinuous, convex
lower semicontinuous functional in second argument, linear in the first argument,
bounded and b(u,v) —b(u,w) < b(u,v—w) and o : E — R be a differentiable convex
functional, which is weakly lower semicontinuous such that

(i) v— (N(w,y),n(v,w)) is convex and lower semicontinuous for any w,y € K,
(ii) N is strongly n-monotone, generalized weakly relaxzed n—« monotone and 7-
convex with respect to first argument for any w,y € K,
(iii) N is n-antimonotone and generalized weakly relaxed monotone in second ar-
gument and Lipschitz continuous in both the arguments,
(iv) n is antisymmetric and Lipschitz continuous and n(v,w) = n(v,u) + n(u, w),
for any u,v,w € K,
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(v) N and n have 0-diagonally convex relation with respect to first argument,
(vi) w — o' (w) is continuous from weak to strong topology and ' is strongly
monotone,
(vii) a # 241, (01 +02)0+ 1> 0 and 0 < p < L2E72)0

then there exists a solution w € K of the problem (L.1) and for each p > 0, there
exists a solution wy11 € K of problems (4.1)) or (4.2) and the approximate solutions
converge strongly to the exact solution.

Proof. As N is n-convex with respect to first argument for any w,y € K, it is
easy to check that condition (i) of Theorem [4|is satisfied. By antisymmetry of 7,
n(v,v) = 0. Hence condition (i) of Theorem s also satisfied. By our assumption
«a is weakly lower semicontinuous. Hence solution to problem exists. Now to
prove the second part of the conclusion, we have to show that all the conditions of
Lemma [2.2] are satisfied. For this purpose we define ¢ : K x K — R, by,

d(u,w) = (' (vy) — o (w),u — w) — p(N (v, Yn), N, w)) + pb(vy, w) — pb(vy, ).

As w — o/(w) is continuous from weak to strong topology, the function w —
(o/ (w), w) is weak continuous on K. So w — ¢(u, w) is weakly lower semicontinuous.
Thus, condition (i) of Lemma is satisfied. To prove the second condition we
assume the contrary. So there exists {u1, -+ ,u,} C K and w which is a convex
combination of u;, such that ¢(u;, w) > 0. From this we get,

n

SN (0) 0 (@), =) = pUN (0, Y ) 1t )+ b (010, w0)—p S Aib(v, ) > 0.
i=1 i=1

As b is convex in the second argument we have

n

Z Xila! (vy) — o/ (w), u; — w) — p(N(Vn, Yn), n(us, w)) > 0.
i—1

This contradicts condition (v). Thus, condition (2) of Lemma holds. Now
considering a set D = {v € K : |lv — u*|| < 6}, where 6 = L{u|u*||] + &[N (u*,v)]
and using condition (i7)—(v) and conditions on b, condition (#i¢) is proved. Hence
all the conditions of Lemma [2.2] are satisfied. So there exists wg € K such that

{0/ (wo) — o' (vn), u = wo) = —=p(N (v, Yn), (1, wo)) + pb(vn, wo) — pb(vn, u) (4.3)

for all w € K. This shows that there exists a solution to the auxiliary variational
inequality problem.

Now for convergence analysis we consider the following functional I' : K — (—o0, +00],
defined by,

I'(v) = a(v) — a(v) = (&' (v), vo — v),

where vg is assumed to be the unique solution of problem (I.1)). By strong mono-
tonicity of o/, we have,

I'(v) = a(v) — a(v) = (/ (v),v0 —v) = %Ilv —wol®.



CLASS OF MVLIP AND EQP IN BANACH SPACES 249

Putting wg = vp11,u = v in (4.2) and by antisymmetricity of 7, strong mono-
tonicity of o', we get,

o
F(Un) - F(UnJrl) Z §||Un - Un+1||2 + p<N('Un7yn)a n(anrlva)) + Pb(Um Un+1) - pb(vn; UO)

o
= §||Un - Un+1||2 + p(N (Vn, Yn) — N(vo,%0), 7(Vn+1,v0))
+ p<N(UO7 yO)v 77(”n+17 UO)> + pb(vm vn+1) - pb('[)n, UO)'
vp being a solution of (|1.1)) it follows that,

g
F(Un) - F(Un+1) > §an - Un+1H2 + P<N(Umyn) - N(“ano)an(vn+1ﬂ}0)>
+ p[b(vo, vo) — b(vo, Vnt1) + b(Vn, Vpg1) — b(vp, v0)]
o
— §an — vn_,_1|\2 + M.

Now using the conditions on b and the conditions (iz) — (iv), we get,
M =p(N(vn,yn) — N(v0,¥0), 1(Vn+1,20))
— p[b(vy, — vo,vo) — b(vy, — Vo, Upt1) + b(vn — vo, vn) — b(vn — vo, vy)]
> plAN (vn; yn) = N (00, 40); N(Vnt1,0n)) + (N (vn; yn) — N(v0, %0), n(vn, vo))]
— pb(vy, — vo,v0 — Vy) + b(vy, — Vo, Vy, — Vpt1)]
> p[(N(vn, yn) = N(vo,yn), n(vn, v0))
+ (N (vo,Yn) — N(vo,y0), 1(vn, v0))
+ (N (vn,Yn) = N(v0,Yn), 1(Vn+1,0n))
+ (N (v0,Yn) — N(v0,Y0)s N(Vn+1, vn))]
= plllon = voll* + llvn = volll[vn — vntall]
> pal|vn — vol|* = po18[vn — volll|vn+1 — val|
= po28[vn = vollllvas1 — vall = pulllvn = voll? + [lvn = voll[on — vata ).
From this we have,
L(vp) = T(vpg1) > pla = (2p + (01 + 02)8)][vn — vol[*.

Condition (vii) implies that {T'(v,)} is a strictly decreasing sequence and it is
nonnegative by the strong monotonicity property and hence converges. So {v,}
converges to vy strongly as n — oo. This completes the proof. ]

5. APPLICATION TO EQUILIBRIUM PROBLEM

Let ¢ : K x K x K — R be denoted as ¢(y,v, w) = (N(v,y),n(w,v)), then the
mixed equilibrium problem corresponding to MVLIP is defined as,

find w € K : ¢(y,v,w) + b(w,v) — b(w,w) > 0,Vv € K. (5.1)

If ¢ is a bifunction from K x K to R, it reduces to the classical equilibrium problem,
introduced by Blum and Oettili [3], given by,

find w e K : ¢(w,v) <0, for all v € K.
This was later studied by various authors ([12], [13]).
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Definition 11. ¢ is relazed a—monotone if 3o : E — R, with a(tz) = tPa(z),Vt >
0,p>1 and z € E, such that

o(y,v,w) + oy, w,v) < a(v, w).
Remark: If « =0, ¢ is monotone, i.e., ¢(y, v, w) + ¢(y, w,v) < 0,Vy,v,w € K.
Definition 12. ¢ is weakly relaxed a—monotone if
oy, v,w) + ¢(y,w,v) < av,w),
1 . d
with }gr(l) a(tz) =0, }gr(l) aa(tz) =0.

Definition 13. ¢ is generalized weakly relaxed a—monotone if
Py, v, w) + ¢y, w,v) < a(v,w),

d
ith lim — «(t 1-1¢ =0.
with lim dta( v+ ( Jw, w)
Remark: Tt is clear from the above definitions that monotonicity = relaxed a—
monotonicity = weakly a— monotonicity = generalized weakly a— monotonic-
ity.

The results regarding MVLIP discussed in previous section can be extended to
the class of equilibrium problem defined above. So we state the results without
proof that follow the similar pattern.

Corollary 1. Let K be a nonempty compact convex subset of a real reflexive Banach
space E. Let ¢ : K x K x K — R be generalized weakly relaxed a—monotone and
hemicontinuous in the second argument and b : E x E — R be a convex lower
semicontinuous function in second argument, such that,

(i) ¢(y,w,w) >0, forally € K,

(ii) ¢(y,w,-) is convex, that is,

oy, w,tvy + (1 — t)ve) < to(y,w,v1) + (1 — t)p(y, w,va), t € (0,1).
Then the following problems are equivalent:
w € K, ¢(y,w,v) + b(w,v) —blw,w) >0, forally,ve kK, (5.2)
w € K, o(y,v,w) + blw,w) — blw,v) < alv,w), foraly,ve K. (5.3)

Corollary 2. If the equilibrium function ¢ is generalized weakly relaxed a—monotone
and hemicontinuous in second argument and the nonlinear bifuction b is convex and
lower semicontinuous in second argument, then the equilibrium problem has
a solution under the following conditions:

(1) (;5(1), U, U) =0,

(2) w— ¢(y,v,w) is conver and lower semicontinuous for fixed y,v € K,

(8) a: E — R is weakly upper semicontinuous.

The next results deal with numerical aspects of the mixed equilibrium problem,
that is, formulation of iterative algorithm and study of convergence analysis.
For this purpose, we first construct an auxiliary variational inequality as follows:
For a given w € K, we consider the problem of finding u € K, such that,

<O/(u) - OL/(U)), v = u> > *,0(15(% w, 'U) + p¢(ya w, u) + p(b(w, u) - b(wv U)), (54)
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where y,v € K, p is a positive constant and « : K — (—00,+00) is a differentiable
convex functional. Here « is considered as an auxiliary differentiable convex func-
tional. If v = w, then w becomes the solution of the mixed equilibrium problem
(.1).

Keeping in view these results, we propose an iterative algorithm as follows:

(i) Let wo be the initial approximation for n = 0.
(ii) At the nth step solve auxiliary variational inequality problem with w* = w,,.
Let wy41 be the solution.
(iii) If [|wpt1 — wp| < € € > 0, stop, otherwise go to (i4).

Next we prove the result that guarantees the existence of solution of the auxiliary
variational inequality problem.

Corollary 3. Let E be a reflexive Banach space with dual space E* and the equi-
librium trifunction ¢ : K x K x K — R be generalized weakly relazed a—monotone
and hemicontinuous in the second argument. b : E x E — R s a conver lower
semicontinuous function in second argument and o : E — R is a differentiable
conver functional, such that

(1) u = o/(u) is continuous from weak to strong topology and « is strongly
conver,
(2) ¢ is A—Lipschitz continuous and strongly monotone with respect to the sec-
ond and third arguments, respectively and ¢(y, w,v) = —d(w,y,v),
(8) b: E x E — R satisfies following conditions,
(i) b(-,v) is linear,
(i1) b(u,v) is bounded, that is there exists a positive constant u, such that,

b(u,v) < pllulllloll, for all u,v € K,

(#i) b(u,v) — b(u, w) < b(u,v —w), for all u,v,w € K,

(4) 5 FA—aand0<p< 2(0”90‘72/’1;\)(0‘7/\7“).

Then there exists a solution wy,11 € K to the auziliary variational inequality prob-
lem for each p > 0 and the approximants converge strongly to the exact solution.

6. CONCLUDING REMARKS

In this work, we have studied the existence of the solution of nonlinear mixed
variational-like inequality with respect to generalized weakly realaxed n—«a mono-
tone mapping in case of both bounded and unbounded sets. We have obtained
an iterative algorithm using auxiliary principle technique and we have shown that
the iterates approximate to the exact solution strongly. The results obtained are
extended to corresponding equilibrium problem. Further we are trying to obtain
the convergence rate and also to frame this problem in nonconvex setting using
hemivariational inequality concept.
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