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EQUIVALENCE AMONG THREE 2-NORMS ON THE SPACE OF
p-SUMMABLE SEQUENCES

SUKRAN KONCA™, MOCHAMMAD IDRIS?2

ABSTRACT. There are two known 2-norms defined on the space of p-summable
sequences of real numbers. The first 2-norm is a special case of Géahler’s for-
mula [Mathematische Nachrichten, 1964], while the second is due to Gunawan
[Bulletin of the Australian Mathematical Society, 2001]. The aim of this paper
is to define a new 2-norm on ¢P and prove the equivalence among these three
2-norms.

1. INTRODUCTION

The theory of 2-normed spaces was first introduced and developed to the theory
of m-normed spaces by Géahler (see, [I]-[5]) in the mid 1960’s, while that of n-
normed spaces was studied later by Misiak [15]. Related works may be found in,
e.g., [61-[T31, [T6]-[T7].

We shall study the space /£, 1 < p < oo, containing all sequences of real
numbers z = (z;) for which >, |z;|’ < oo, and usual norm defined on it is

zllp = (32, |acj\p)% Throughout this note, we assume that p lies in the inter-
val 1 < p < co unless otherwise stated.

Let n be a nonnegative integer and X be a real vector space of dimension d > n
(d may be infinite). A real-valued function ||., ..., .|| on X™ satisfying the following
four properties is called an n-norm on X and the pair (X, |.,...,.||) is called an
n-normed space

(1) ||z1ys ..o, zn]| = 0 if and only if z1, ..., 2, are linearly dependent;
(2) ||1, ..., nll is invariant under permutation;

(3) llazy, ... znl| = || |21, ..., 2n|| for a € R;

(4) |lz1 + 24, 22, oy || < 21, 22y ooy T || + |20, T2 o, |-
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If X is a normed space, then, according to Géhler, the following formula defines
an n-norm on X:

S (5171) e f (zn)

Hxh”.’anG = sSup : (11)

Here X’ denotes the dual of X, which consists of bounded linear functionals on X.

For X = /P the space of p-summable sequences of real numbers, the above formula
reduces to

2 TRy 2 T1j%ng

||:E1,...,a:n||§ = sup , (1.2)

z€P’, ||z, <1 ' i
i1 D TngZl oo D TnjZng

where ||.||,; denotes the usual norm on X’ = ¢9 and each of the sums is taken over
j € N. Here ¢ denotes the dual exponent of p, so that % + % =1(1<p<o0).

In 2001, Gunawan [7] defined a different n-norm on 7 (1 < p < 00) by

=

p
Tijp Ty

1
|21, Tl = az...Zabs ST , (1.3)
Jn In Z1j, cee Tng,

where x; = (z;;), ¢ = 1,...,n, j € N. Thus, on ¢7, we have two definitions of n-
norms, one is derived from Géahler’s formula given by equation and the other
is due to Gunawan given by equation . For p = 2, one may verify that the two
n-noms are identical (see [6]). The equation reduces to the equation for
n=2and z,y € P

G . _ su fU(x) fv(m)
I sl = AR | Ly fo) ‘ (1.4)

[ full <1, [ foll<1

For X = /P and z,y € P the above formula, for convenience, can be rewritten

as
¢ (@) (2,0) ‘
x| = sup
beslly = s R
lullg,llvll, <1
where ¢ is the conjugate of p such that % =1- % (1 < p < o0) and 9 is the

dual of /P, which consists of bounded linear functionals f,, f, on ¢? where f,(z) =
(z,u) ==Y 00 mpug (x € P and u € £9), fu(z) = (z,v) := > po, xpvp (z € (P and
v € £7) and |[|-[|, is usual norm on (7.

For n = 2 and z,y € ¢P the equation (1.3]) reduces to the following equation:

1
P
Ty Ty
Yi Yj

||x,y|\f = % Z Zabs

i=1 j=1

Wibawah-Kusuma and Gunawan [I7] proved that Gunawan’s and Géhler’s n-
norms on /P are strongly equivalent.
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Lemma 1.1. (Theorem 2.3, [I7]) For any z1,...,x, € P we have

1 9 H G 1 H
()3 @1, e @l < N30, 2|6 < (A 1, s

If we take n = 2, then the inequality given above for x,y € P reduces to
1_ H G 1 H
27, yll, < syl <27 ||zl - (1.5)
Lemma 1.2. (Lemma 2.1, [10]) For every z,y € ¢” we have

H _1
Iz, yll, <277 llzll, lyl,-

In this work, we define a new 2-norm on #? and prove the equivalence of these
three 2-norms on ¢P.

2. MAIN RESULTS

Let x,y € ¢P and ¢9 be the dual of £P, which consists of bounded linear functionals
where ¢ is the conjugate of p such that % = 1—% (1 <p<o0)and fy, f, on ¢P where
fu(@) = (z,u) == Y70 wpug (z € P and u € £9), f,(z) = (z,v) == > 7o, Tkvk
(z € (7 and v € £). Throughout the paper, by |||, we mean the usual norm on
/P. Now, we define a new formula on /P as follows:

ST
Iz, yl," = sup
u,v € {1
l[ullg llvlly <1

( Iy, w)z = (z,w)yll, + Iy, v) @ — (z, ) yll, ).

N =

is a 2-norm on /P.

The following fact tells us that the function ||., .||§I

Fact 2.1. The real-valued function |[|.,.||5? defines a 2-norm on /7.

Proof. We need to check that ||., .|| 5 I satisfies the four properties of a 2-norm. The
7if” part of (1), (2), (3) and (4) are obvious. To verify the "only if” part of (1),
assume that ||., .||§I = 0. Then from the definition of norm we have (y,u)z —
(z,u)y =0 and (y,v)x — (x,v)y = 0. Thus,

=50y () £0)

and

o= 20 (0 £0).

(y,v)
Since (.,.) is bounded linear functional on ¢?, then % and gzz; are real. For xz =

(z,u)

Wy ((y,u) # 0), if we insert the value of z in the equation (y,v) z—(x,v)y = 0,
then clearly x satisfies the condition. In both cases, we conclude that x and y are
linearly dependent. O

As a consequence of Fact 2.1 we have the following corollary.

Corollary 2.2. The space (P equipped with ||., .||§I is a 2-normed space.
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Lemma 2.3. Let 1 < p < oco. For z,y € (P, we have
ST 1 H
||x7y||p S 2p ||‘T>y||p
Proof. For x,y € fP and u € ¢, we have the following by utilizing Holder’s inequal-
ity
Ky, u)  — (2, u) yll;, = Z (y, w) @i — (z, u) il

P

|
.Mg
2

s
Il
-

(ziyj — 259y,

<
Il
—

o p
2 lziy; — 2593 |uj]

P

IA
? HMg

o)

o0 q
< Z lziy; — wjyz-l”(z |ukq)
1 k=1

=1 5=

p
= 2Jull? (le,yl}' )"

From the above equation, we have

SI
leyly" = s S (lwwa— )yl + e - (@)l,)
u,v € 4
el Iloll, < 1
1 H 1 H
< s (2l llayl) 23 ol e )
u,v € 04
Jull vl < 1
< 2% |l g}

O

Now, we need the following lemma to show the equivalence between the 2-norms
s [I5" and |[., [

Lemma 2.4. For z,y € /P and a,b,c,d € R, we have

a b

H H
d ||‘r7pr = ||am_by? —C.’E‘i‘dpr

abs

Proof. Let x,y € P and a,b,c,d € R. Then we obtain

p 1 oo o0
(law = by, —co +dyl[)')" = 5 D7 3" (awi = bys) (—e; + dy;) = (a; — by) (—ex; + dys) |
i=1 j=1

ladz;y; + bexjy; — bexiy; — adxjy;|”

I
e
WK

lad (xsy; — 5y:) — be (xay; — x59:)]”

I
.“E‘{g
NE

lad — be” (Jl2,yll}')"

b
d

Thus, we have abs

H H
\nz,mu — llaz — by, ez + dy||" O
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Lemma is important to obtain the equivalence between ||.,. |57 and ||., .||
Theorem 2.5. For x,y € (P we have
1_9q H ST 1 H
207 s yll, < llyll,” <27 =,y -
Proof. By the equation (1.5)) in Lemma we have
2
H 1-1 G H
(lewly')” <25 N2yl .l

Then

1 1
H i _ 1 H\ 2 G\ 2
Il <22 =% (e wll)) (Il wll§)

1o (z,u) (z,v) H
= 22 2p sup x,
e G G [
[[ullg, flvlly, <1
3
<ok % sup abs éyzi gj}‘; R
u,v € L4 Y ’
l[ullg, flvll, <1
By Lemma [2.4] we have
H a1 1 H\L
e, yll, <2272 sup [y, w) x — (z,u)y, = (y,v) & + ((z,v) yll,, )>-

u,v € {1
[ullg s fvlly <1

Meanwhile, Lemma [I.2] helps us to obtain the below inequality.

D=

H 1
legly <275 s (lww e — gl |- o) o+ (@0l
u,v € 04
Tl <1
<2 s (e — @yl + 3w - @ol,)
u,v € 01

[ullgs [lolly <1

1-1 ST
=277 |lz,yll,"

(2.1)
Hence, by Lemma and equation (2.1)) we obtain the following equivalence
1 H SI 1 H
20 lz,yll, < llzyl,” <27 llz,yll, -
|

The equivalence relation between the 2-norms ||z, ny and ||1:,y||gl can be ob-
tained with a simple process.

Theorem 2.6. For x,y € /P we have

1 e SI e
3 eyl < llesyll,” < 2y,
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Proof. From the equation (1.5) and Theorem we obtain

1_ H G 1 H SI1 1 H G
207 o yll, < oyl <20 llzyl, <22yl <20 lz,yl, <4zl

Hence, we have the result. (I
Corollary 2.7. For x,y € (P the three 2-norms ||,Hf7 Il ||§ and ||,Hfl on (P
are equivalent.

Proof. Tt is easy to see from Theorem [2.5 and Theorem [2.6] O

We know that the space (Ep, Il ||f) is complete (see, Theorem 2.6 in [7]). Since

(Ep, Il ||5) and (7 |., ||§I) are equivalent two 2-norms, then we come to the
main result which is given by the following corollary.

Corollary 2.8. The space (Ep, Il ||§I) is complete. In other words, it is a Banach
space.

Proof. Let z(m) be a Cauchy sequence in ¢P with respect to ||., .||§I. Then, by
Theorem x(m) is Cauchy with respect to ||,Hf But we know that 7 is
complete with respect to ||., .Hf, and so z(m) must converge to some x € (P in
Il Hf By another application of Theorem x(m) also converges to x in ||., .||§I.
This shows that ¢P is complete with respect to the 2-norm ||., .||§I. O

3. CONCLUDING REMARKS

In this work, a new 2-norm |., .||§I is defined on ¢?. We have just seen that
Gaéhler’s and Gunawan’s 2-norms on ¢P are (strongly) equivalent to this new 2-
norm on ¢P. If one insists to involve the functionals on ¢P, one may use the fact
that the dual space £7 is also a 2-normed space, as well as /7 (1 < p < c0). Thus
one may generalize this definition of 2-norm to n-norm on ¢P. The results obtained
in this work can be extended to n-normed space.
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