EQUIVALENCE AMONG THREE 2-NORMS ON THE SPACE OF p-SUMMABLE SEQUENCES

ŞÜKRAN KONCA ${ }^{1 *}$, MOCHAMMAD IDRIS ${ }^{2}$

Abstract

There are two known 2-norms defined on the space of p-summable sequences of real numbers. The first 2-norm is a special case of Gähler's formula [Mathematische Nachrichten, 1964], while the second is due to Gunawan [Bulletin of the Australian Mathematical Society, 2001]. The aim of this paper is to define a new 2 -norm on ℓ^{p} and prove the equivalence among these three 2-norms.

1. Introduction

The theory of 2-normed spaces was first introduced and developed to the theory of n-normed spaces by Gähler (see, [1]-[5]) in the mid 1960's, while that of n normed spaces was studied later by Misiak [15]. Related works may be found in, e.g., [6]-[14], 16]-[17].

We shall study the space $\ell^{p}, 1 \leq p<\infty$, containing all sequences of real numbers $x=\left(x_{j}\right)$ for which $\sum_{j}\left|x_{j}\right|^{p}<\infty$, and usual norm defined on it is $\|x\|_{p}:=\left(\sum_{j}\left|x_{j}\right|^{p}\right)^{\frac{1}{p}}$. Throughout this note, we assume that p lies in the interval $1 \leq p<\infty$ unless otherwise stated.

Let n be a nonnegative integer and X be a real vector space of dimension $d \geq n$ (d may be infinite). A real-valued function $\|., \ldots,$.$\| on X^{n}$ satisfying the following four properties is called an n-norm on X and the pair $(X,\|., \ldots,\|$.$) is called an$ n-normed space
(1) $\left\|x_{1}, \ldots, x_{n}\right\|=0$ if and only if x_{1}, \ldots, x_{n} are linearly dependent;
(2) $\left\|x_{1}, \ldots, x_{n}\right\|$ is invariant under permutation;
(3) $\left\|\alpha x_{1}, \ldots, x_{n}\right\|=|\alpha|\left\|x_{1}, \ldots, x_{n}\right\|$ for $\alpha \in \mathbb{R}$;
(4) $\left\|x_{1}+x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right\| \leq\left\|x_{1}, x_{2}, \ldots, x_{n}\right\|+\left\|x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right\|$.

[^0]If X is a normed space, then, according to Gähler, the following formula defines an n-norm on X :

$$
\left\|x_{1}, \ldots, x_{n}\right\|^{G}:=\sup _{f_{i} \in X^{\prime},\left\|f_{i}\right\| \leq 1}\left|\begin{array}{ccc}
f_{1}\left(x_{1}\right) & \cdots & f_{1}\left(x_{n}\right) \tag{1.1}\\
\vdots & \ddots & \vdots \\
f_{n}\left(x_{1}\right) & \ldots & f_{n}\left(x_{n}\right)
\end{array}\right|
$$

Here X^{\prime} denotes the dual of X, which consists of bounded linear functionals on X. For $X=\ell^{p}$, the space of p-summable sequences of real numbers, the above formula reduces to

$$
\left\|x_{1}, \ldots, x_{n}\right\|_{p}^{G}:=\sup _{\substack{z_{i} \in \ell^{p^{\prime}},\left\|z_{i}\right\|_{q} \leq 1 \tag{1.2}\\
i=1, \ldots, n}}\left|\begin{array}{ccc}
\sum_{j} x_{1 j} z_{1 j} & \cdots & \sum_{j} x_{1 j} z_{n j} \\
\vdots & \ddots & \vdots \\
\sum_{j} x_{n j} z_{1 j} & \cdots & \sum_{j} x_{n j} z_{n j}
\end{array}\right|
$$

where $\|\cdot\|_{q}$ denotes the usual norm on $X^{\prime}=\ell^{q}$ and each of the sums is taken over $j \in \mathbb{N}$. Here q denotes the dual exponent of p, so that $\frac{1}{p}+\frac{1}{q}=1(1<p<\infty)$.

In 2001, Gunawan [7] defined a different n-norm on $\ell^{p}(1 \leq p<\infty)$ by

$$
\left\|x_{1}, \ldots, x_{n}\right\|_{p}^{H}:=\left[\frac{1}{n!} \sum_{j_{1}} \ldots \sum_{j_{n}} a b s\left|\begin{array}{ccc}
x_{1 j_{1}} & \cdots & x_{n j_{1}} \tag{1.3}\\
\vdots & \ddots & \vdots \\
x_{1 j_{n}} & \cdots & x_{n j_{n}}
\end{array}\right|^{p}\right]^{\frac{1}{p}}
$$

where $x_{i}=\left(x_{i j}\right), i=1, \ldots, n, j \in \mathbb{N}$. Thus, on ℓ^{p}, we have two definitions of nnorms, one is derived from Gähler's formula given by equation 1.2 and the other is due to Gunawan given by equation 1.3 . For $p=2$, one may verify that the two n-noms are identical (see [6]). The equation (1.1) reduces to the equation (1.4) for $n=2$ and $x, y \in \ell^{p}$

$$
\|x, y\|^{G}:=\sup _{\substack{f_{u}, f_{v} \in X^{\prime} \tag{1.4}\\
\left\|f_{u}\right\| \leq 1,\left\|f_{v}\right\| \leq 1}}\left|\begin{array}{ll}
f_{u}(x) & f_{v}(x) \\
f_{u}(y) & f_{v}(y)
\end{array}\right| .
$$

For $X=\ell^{p}$ and $x, y \in \ell^{p}$ the above formula, for convenience, can be rewritten as

$$
\|x, y\|_{p}^{G}:=\sup _{u, v \in \ell^{q}}\left|\begin{array}{ll}
\langle x, u\rangle & \langle x, v\rangle \\
\langle y, u\rangle & \langle y, v\rangle
\end{array}\right|
$$

where q is the conjugate of p such that $\frac{1}{q}=1-\frac{1}{p}(1<p<\infty)$ and ℓ^{q} is the dual of ℓ^{p}, which consists of bounded linear functionals f_{u}, f_{v} on ℓ^{p} where $f_{u}(x)=$ $\langle x, u\rangle:=\sum_{k=1}^{\infty} x_{k} u_{k}\left(x \in \ell^{p}\right.$ and $\left.u \in \ell^{q}\right), f_{v}(x)=\langle x, v\rangle:=\sum_{k=1}^{\infty} x_{k} v_{k}\left(x \in \ell^{p}\right.$ and $\left.v \in \ell^{q}\right)$ and $\|\cdot\|_{q}$ is usual norm on ℓ^{q}.

For $n=2$ and $x, y \in \ell^{p}$ the equation 1.3 reduces to the following equation:

$$
\|x, y\|_{p}^{H}:=\left[\frac{1}{2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a b s\left|\begin{array}{ll}
x_{i} & x_{j} \\
y_{i} & y_{j}
\end{array}\right|^{p}\right]^{\frac{1}{p}}
$$

Wibawah-Kusuma and Gunawan [17] proved that Gunawan's and Gähler's nnorms on ℓ^{p} are strongly equivalent.

Lemma 1.1. (Theorem 2.3, [17]) For any $x_{1}, \ldots, x_{n} \in \ell^{p}$ we have

$$
(n!)^{\frac{1}{p}-1}\left\|x_{1}, \ldots, x_{n}\right\|_{p}^{H} \leq\left\|x_{1}, \ldots, x_{n}\right\|_{p}^{G} \leq(n!)^{\frac{1}{p}}\left\|x_{1}, \ldots, x_{n}\right\|_{p}^{H}
$$

If we take $n=2$, then the inequality given above for $x, y \in \ell^{p}$ reduces to

$$
\begin{equation*}
2^{\frac{1}{p}-1}\|x, y\|_{p}^{H} \leq\|x, y\|_{p}^{G} \leq 2^{\frac{1}{p}}\|x, y\|_{p}^{H} \tag{1.5}
\end{equation*}
$$

Lemma 1.2. (Lemma 2.1, [10]) For every $x, y \in \ell^{p}$ we have

$$
\|x, y\|_{p}^{H} \leq 2^{1-\frac{1}{p}}\|x\|_{p}\|y\|_{p}
$$

In this work, we define a new 2-norm on ℓ^{p} and prove the equivalence of these three 2-norms on ℓ^{p}.

2. Main Results

Let $x, y \in \ell^{p}$ and ℓ^{q} be the dual of ℓ^{p}, which consists of bounded linear functionals where q is the conjugate of p such that $\frac{1}{q}=1-\frac{1}{p}(1<p<\infty)$ and f_{u}, f_{v} on ℓ^{p} where $f_{u}(x)=\langle x, u\rangle:=\sum_{k=1}^{\infty} x_{k} u_{k}\left(x \in \ell^{p}\right.$ and $\left.u \in \ell^{q}\right), f_{v}(x)=\langle x, v\rangle:=\sum_{k=1}^{\infty} x_{k} v_{k}$ $\left(x \in \ell^{p}\right.$ and $\left.v \in \ell^{q}\right)$. Throughout the paper, by $\|\cdot\|_{p}$ we mean the usual norm on ℓ^{p}. Now, we define a new formula on ℓ^{p} as follows:

$$
\|x, y\|_{p}^{S I}:=\sup _{u, v \in \ell^{q}} \frac{1}{2}\left(\|\langle y, u\rangle x-\langle x, u\rangle y\|_{p}+\|\langle y, v\rangle x-\langle x, v\rangle y\|_{p}\right)
$$

The following fact tells us that the function $\|., .\|_{p}^{S I}$ is a 2 -norm on ℓ^{p}.
Fact 2.1. The real-valued function $\|., .\|_{p}^{S I}$ defines a 2-norm on ℓ^{p}.
Proof. We need to check that $\|., .\|_{p}^{S I}$ satisfies the four properties of a 2 -norm. The "if" part of (1), (2), (3) and (4) are obvious. To verify the "only if" part of (1), assume that $\|., \cdot\|_{p}^{S I}=0$. Then from the definition of norm we have $\langle y, u\rangle x-$ $\langle x, u\rangle y=0$ and $\langle y, v\rangle x-\langle x, v\rangle y=0$. Thus,

$$
x=\frac{\langle x, u\rangle}{\langle y, u\rangle} y \quad(\langle y, u\rangle \neq 0)
$$

and

$$
x=\frac{\langle x, v\rangle}{\langle y, v\rangle} y \quad(\langle y, v\rangle \neq 0) .
$$

Since $\langle.,$.$\rangle is bounded linear functional on \ell^{p}$, then $\frac{\langle y, u\rangle}{\langle x, u\rangle}$ and $\frac{\langle y, v\rangle}{\langle x, v\rangle}$ are real. For $x=$ $\frac{\langle x, u\rangle}{\langle y, u\rangle} y \quad(\langle y, u\rangle \neq 0)$, if we insert the value of x in the equation $\langle y, v\rangle x-\langle x, v\rangle y=0$, then clearly x satisfies the condition. In both cases, we conclude that x and y are linearly dependent.

As a consequence of Fact 2.1 we have the following corollary.
Corollary 2.2. The space ℓ^{p} equipped with $\|., .\|_{p}^{S I}$ is a 2 -normed space.

Lemma 2.3. Let $1 \leq p<\infty$. For $x, y \in \ell^{p}$, we have

$$
\|x, y\|_{p}^{S I} \leq 2^{\frac{1}{p}}\|x, y\|_{p}^{H}
$$

Proof. For $x, y \in \ell^{p}$ and $u \in \ell^{q}$, we have the following by utilizing Hölder's inequality

$$
\begin{aligned}
\|\langle y, u\rangle x-\langle x, u\rangle y\|_{p}^{p} & =\sum_{i=1}^{\infty}\left|\langle y, u\rangle x_{i}-\langle x, u\rangle y_{i}\right|^{p} \\
& =\sum_{i=1}^{\infty}\left|\sum_{j=1}^{\infty}\left(x_{i} y_{j}-x_{j} y_{i}\right) u_{j}\right|^{p} \\
& \leq \sum_{i=1}^{\infty}\left(\sum_{j=1}^{\infty}\left|x_{i} y_{j}-x_{j} y_{i}\right|\left|u_{j}\right|\right)^{p} \\
& \leq \sum_{i=1}^{\infty} \sum_{j=1}^{\infty}\left|x_{i} y_{j}-x_{j} y_{i}\right|^{p}\left(\sum_{k=1}^{\infty}\left|u_{k}\right|^{q}\right)^{\frac{p}{q}} \\
& =2\|u\|_{q}^{p}\left(\|x, y\|_{p}^{H}\right)^{p} .
\end{aligned}
$$

From the above equation, we have

$$
\begin{aligned}
&\|x, y\|_{p}^{S I}=\sup _{u, v \in \ell^{q}} \frac{1}{2}\left(\|\langle y, u\rangle x-\langle x, u\rangle y\|_{p}+\|\langle y, v\rangle x-\langle x, v\rangle y\|_{p}\right) \\
&\|u\|_{q},\|v\|_{q} \leq 1 \\
& \sup _{u, v \in \ell^{q}} \quad \frac{1}{2}\left(2^{\frac{1}{p}}\|u\|_{q}\|x, y\|_{p}^{H}+2^{\frac{1}{p}}\|v\|_{q}\|x, y\|_{p}^{H}\right) \\
&\|u\|_{q},\|v\|_{q} \leq 1 \\
& \leq 2^{\frac{1}{p}}\|x, y\|_{p}^{H} .
\end{aligned}
$$

Now, we need the following lemma to show the equivalence between the 2-norms $\|., .\|_{p}^{S I}$ and $\|., .\|_{p}^{H}$.

Lemma 2.4. For $x, y \in \ell^{p}$ and $a, b, c, d \in \mathbb{R}$, we have

$$
a b s\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|\|x, y\|_{p}^{H}=\|a x-b y,-c x+d y\|_{p}^{H} .
$$

Proof. Let $x, y \in \ell^{p}$ and $a, b, c, d \in \mathbb{R}$. Then we obtain

$$
\begin{aligned}
\left(\|a x-b y,-c x+d y\|_{p}^{H}\right)^{p} & =\frac{1}{2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty}\left|\left(a x_{i}-b y_{i}\right)\left(-c x_{j}+d y_{j}\right)-\left(a x_{j}-b y_{j}\right)\left(-c x_{i}+d y_{i}\right)\right|^{p} \\
& =\frac{1}{2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty}\left|a d x_{i} y_{j}+b c x_{j} y_{i}-b c x_{i} y_{j}-a d x_{j} y_{i}\right|^{p} \\
& =\frac{1}{2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty}\left|a d\left(x_{i} y_{j}-x_{j} y_{i}\right)-b c\left(x_{i} y_{j}-x_{j} y_{i}\right)\right|^{p} \\
& =|a d-b c|^{p}\left(\|x, y\|_{p}^{H}\right)^{p}
\end{aligned}
$$

Thus, we have $a b s\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|\|x, y\|_{p}^{H}=\|a x-b y,-c x+d y\|_{p}^{H}$.

Lemma 2.4 is important to obtain the equivalence between $\|., .\|_{p}^{S I}$ and $\|., .\|_{p}^{H}$.
Theorem 2.5. For $x, y \in \ell^{p}$ we have

$$
2^{\frac{1}{p}-1}\|x, y\|_{p}^{H} \leq\|x, y\|_{p}^{S I} \leq 2^{\frac{1}{p}}\|x, y\|_{p}^{H}
$$

Proof. By the equation 1.5 in Lemma 1.1, we have

$$
\left(\|x, y\|_{p}^{H}\right)^{2} \leq 2^{1-\frac{1}{p}}\|x, y\|_{p}^{G}\|x, y\|_{p}^{H}
$$

Then

$$
\begin{aligned}
\|x, y\|_{p}^{H} & \leq 2^{\frac{1}{2}-\frac{1}{2 p}}\left(\|x, y\|_{p}^{H}\right)^{\frac{1}{2}}\left(\|x, y\|_{p}^{G}\right)^{\frac{1}{2}} \\
& =2^{\frac{1}{2}-\frac{1}{2 p}}\left(\begin{array}{ccc}
\sup ^{u, v \in \ell^{q}} \\
\|u\|_{q},\|v\|_{q} \leq 1
\end{array}\left|\begin{array}{cc}
\langle x, u\rangle & \langle x, v\rangle \\
\langle y, u\rangle & \langle y, v\rangle
\end{array}\right|\|x, y\|_{p}^{H}\right. \\
& \leq 2^{\frac{1}{2}-\frac{1}{2 p}}\left(\begin{array}{ccc}
\sup ^{2} \\
u, v \in \ell^{q} & a b s\left|\begin{array}{ll}
\langle y, u\rangle & \langle x, u\rangle \\
\langle y, v\rangle & \langle x, v\rangle
\end{array}\right|\|x, y\|_{p}^{H} \\
\|u\|_{q},\|v\|_{q} \leq 1
\end{array}\right)^{\frac{1}{2}}
\end{aligned}
$$

By Lemma 2.4, we have

$$
\|x, y\|_{p}^{H} \leq 2^{\frac{1}{2}-\frac{1}{2 p}} \sup _{u, v \in \ell^{q}} \|\langle y, u\rangle x-\langle x, u\rangle y,-\langle y, v\rangle x+\left(\langle x, v\rangle y \|_{p}^{H}\right)^{\frac{1}{2}} .
$$

Meanwhile, Lemma 1.2 helps us to obtain the below inequality.

$$
\begin{align*}
& \|x, y\|_{p}^{H} \leq 2^{1-\frac{1}{p}} \sup _{u, v \in \ell^{q}}\left(\|\langle y, u\rangle x-\langle x, u\rangle y\|_{p}\|-\langle y, v\rangle x+\langle x, v\rangle y\|_{p}\right)^{\frac{1}{2}} \\
& \quad \leq 2_{q},\|v\|_{q} \leq 1 \\
& \sup _{\substack{1-\frac{1}{p}}}\left(\frac{1}{2}\|\langle y, u\rangle x-\langle x, u\rangle y\|_{p}+\frac{1}{2}\|\langle y, v\rangle x-\langle x, v\rangle y\|_{p}\right) \\
& \|u\|_{q},\|v\|_{q} \leq 1 \\
& \tag{2.1}\\
& =2^{1-\frac{1}{p}}\|x, y\|_{p}^{S I} .
\end{align*}
$$

Hence, by Lemma 2.3 and equation 2.1 we obtain the following equivalence

$$
2^{\frac{1}{p}-1}\|x, y\|_{p}^{H} \leq\|x, y\|_{p}^{S I} \leq 2^{\frac{1}{p}}\|x, y\|_{p}^{H}
$$

The equivalence relation between the 2-norms $\|x, y\|_{p}^{G}$ and $\|x, y\|_{p}^{S I}$ can be obtained with a simple process.

Theorem 2.6. For $x, y \in \ell^{p}$ we have

$$
\frac{1}{2}\|x, y\|_{p}^{G} \leq\|x, y\|_{p}^{S I} \leq 2\|x, y\|_{p}^{G}
$$

Proof. From the equation (1.5) and Theorem 2.5, we obtain

$$
2^{\frac{1}{p}-1}\|x, y\|_{p}^{H} \leq\|x, y\|_{p}^{G} \leq 2^{\frac{1}{p}}\|x, y\|_{p}^{H} \leq 2\|x, y\|_{p}^{S I} \leq 2^{\frac{1}{p}+1}\|x, y\|_{p}^{H} \leq 4\|x, y\|_{p}^{G}
$$

Hence, we have the result.
Corollary 2.7. For $x, y \in \ell^{p}$ the three 2 -norms $\|., .\|_{p}^{H},\|., \cdot\|_{p}^{G}$ and $\|., .\|_{p}^{S I}$ on ℓ^{p} are equivalent.

Proof. It is easy to see from Theorem 2.5 and Theorem 2.6 .
We know that the space $\left(\ell^{p},\|., .\|_{p}^{H}\right)$ is complete (see, Theorem 2.6 in [7]). Since $\left(\ell^{p},\|., .\|_{p}^{H}\right)$ and $\left(\ell^{p},\|., .\|_{p}^{S I}\right)$ are equivalent two 2 -norms, then we come to the main result which is given by the following corollary.

Corollary 2.8. The space $\left(\ell^{p},\|., .\|_{p}^{S I}\right)$ is complete. In other words, it is a Banach space.
Proof. Let $x(m)$ be a Cauchy sequence in ℓ^{p} with respect to $\|., .\|_{p}^{S I}$. Then, by Theorem $2.5 x(m)$ is Cauchy with respect to $\|.,\|_{p}^{H}$. But we know that ℓ^{p} is complete with respect to $\|., .\|_{p}^{H}$, and so $x(m)$ must converge to some $x \in \ell^{p}$ in $\|., .\|_{p}^{H}$. By another application of Theorem 2.5, $x(m)$ also converges to x in $\|., .\|_{p}^{S I}$. This shows that ℓ^{p} is complete with respect to the 2 -norm $\|., .\|_{p}^{S I}$.

3. CONCLUDING REMARKS

In this work, a new 2 -norm $\|., .\|_{p}^{S I}$ is defined on ℓ^{p}. We have just seen that Gähler's and Gunawan's 2-norms on ℓ^{p} are (strongly) equivalent to this new 2norm on ℓ^{p}. If one insists to involve the functionals on ℓ^{p}, one may use the fact that the dual space ℓ^{q} is also a 2 -normed space, as well as $\ell^{p}(1 \leq p<\infty)$. Thus one may generalize this definition of 2 -norm to n-norm on ℓ^{p}. The results obtained in this work can be extended to n-normed space.

Acknowledgments. The authors would like to thank the anonymous referees for theirs comments that helped us to improve this article.

References

[1] S. Gähler, 2-metrische räume und ihre topologische struktur, Math. Nachr. 26 (1963) 115148.
[2] S. Gähler, Lineare 2-normierte räume, Math. Nachr. 28 (1964) 1-43.
[3] S. Gähler, Untersuchungen ber verallgemeinerte m-metrische räume I, Math. Nachr. 40 (1969) 165-189.
[4] S. Gähler, Untersuchungen ber verallgemeinerte m-metrische räume $I I$, Math. Nachr. 40 (1969) 229-264.
[5] S. Gähler, Untersuchungen ber verallgemeinerte m-metrische räume III, Math. Nachr. 41 (1970) 23-36.
[6] S. M. Gozali, H. Gunawan, O. Neswan, On n-norms and bounded n-linear functionals in a Hilbert space, Ann. Funct. Anal. 1 (2010) 72-79.
[7] H. Gunawan, The space of p-summable sequences and its natural n-norms, Bull. Austral. Math. Soc. 64 (2001) 137-147.
[8] H. Gunawan, W. Setya-Budhi, Mashadi, S. Gemawati, On volume of n-dimensional parallelepipeds in ℓ^{p} spaces, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. 16 (2005) 48-54.
[9] H. Gunawan, Mashadi, On n-normed spaces, Int. J. Math. Math. Sci. 2710 (2001) 631-639.
[10] M. Idris, S. Ekariani, H. Gunawan, On the space of p-summable sequences, Mat. Vesnik 65 1 (2013) 58-63.
[11] Ş. Konca, M. Idris, H. Gunawan, M. Başarır, p-Summable sequence spaces with 2-inner products, Contemporary Anal. Appl. Math. 32 (2015) 213-226.
[12] Ş. Konca, M. Idris, H. Gunawan, A new 2 -inner product on the space of p-summable sequences, J. Egyptian Math. Soc. 242 (2016) 244-249.
[13] Ş. Konca, Some notes on the space of p-summable sequences, Kuwait J. Sci. (2016) accepted.
[14] Ş. Konca, H. Gunawan, M. Başarır, Some remarks on ℓ^{p} as an n-normed space, Mathematical Sci. Appl. E-Notes 22 (2014) 45-50.
[15] A. Misiak, n-inner product spaces, Math. Nachr. 140 (1989) 299-319.
[16] A. Mutaqin, H. Gunawan, Equivalence of n-norms on the space of p-summable sequences, J. Indones. Math. Soc. 16 (2010).
[17] R. A. Wibawa-Kusumah, H. Gunawan, Two equivalent n-norms on the space of p-summable sequences, Periodica Math. Hungar. 671 (2013) 63-69.

Department of Mathematics, Bitlis Eren University, 13000, Bitlis, Turkey
E-mail address: skonca@beu.edu.tr
Department of Mathematics, Institute of Technology Bandung, Bandung 40132, Indonesia,
(${ }^{2}$ Permanent Address: Department of Mathematics, Lambung Mangkurat University, 70711, Banjarbaru, Indonesia).

E-mail address: mochidris@students.itb.ac.id, idemath@gmail.com

[^0]: 2000 Mathematics Subject Classification. 46B05, 46B20, 46A45, 46A99, 46B99.
 Key words and phrases. 2-normed spaces; the space of p-summable sequences; completeness; norm equivalence.
 ©2016 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted November 8, 2016. Published December 4, 2016.

