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COMMENTS ON TWO COMPLETELY MONOTONIC

FUNCTIONS INVOLVING THE q-TRIGAMMA FUNCTION

FENG QI, FANG-FANG LIU, XIAO-TING SHI

Abstract. In the papers [F. Qi, A completely monotonic function related to

the q-trigamma function, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl.

Math. Phys. 76 (2014), no. 1, 107–114] and [J.-L. Zhao, A completely mono-
tonic function relating to the q-trigamma function, J. Math. Inequal. 9 (2015),

no. 1, 53–60; Available online at http://dx.doi.org/10.7153/jmi-09-05], Qi

and Zhao proved the complete monotonicity of two functions involving the
q-trigamma function. These two functions originate and generalize the same

function involving the classical trigamma function. In current paper, the au-
thors compare with and comments on these two functions and related results

obtained in the above-mentioned two papers. Moreover, the authors correct

some errors by repeating the proof supplied by Qi in the above-mentioned
paper published in 2014.

1. Notation

It is well known [3, 6] that the Euler gamma function Γ(z) may be defined by

Γ(z) = lim
n→∞

n!nz∏n
k=0(z + k)

, z 6= 0,−1,−2, . . .

The logarithmic derivative of Γ(z), denoted by ψ(z) = Γ′(z)
Γ(z) , is called the digamma

function, and the derivatives ψ(i)(z) for i ∈ {0} ∪ N are respectively called the
polygamma functions, where N stands for the set of all positive integers. In par-
ticular, the functions ψ′(z) and ψ′′(z) are called the trigamma and tetragamma
functions. For some behaving properties of Γ(z) at z = 0,−1,−2, . . . , please refer
to [12, 18].

The q-analogue Γq(z) of the gamma function Γ(z) may be defined for <(z) > 0
by, when 0 < q < 1,

Γq(z) = (1− q)1−z
∞∏
i=0

1− qi+1

1− qi+z
,
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and by, when q > 1,

Γq(z) = (q − 1)1−zq(
z
2)
∞∏
i=0

1− q−(i+1)

1− q−(i+z)
.

When <(z) > 0, the q-digamma function ψq(z), the q-analogue of the digamma
function ψ(z), may be defined by

ψq(z) =
Γ′q(z)

Γq(z)
= − ln(1− q) + ln q

∞∑
k=0

qk+z

1− qk+z

= − ln(1− q) + ln q

∞∑
k=1

qkz

1− qk

for 0 < q < 1 and by

ψq(z) = − ln(q − 1) + ln q

(
z − 1

2
−
∑
n≥0

q−n−z

1− q−n−z

)

for q > 1. The functions ψ
(k)
q (z), the q-analogues of the polygamma functions

ψ(k)(z), for k ∈ N are called the q-polygamma functions. For detailed information
about the above formulas, see [3, 7, 8, 11, 19] and closely related references therein.
The above mentioned functions satisfy the following relations

lim
q→1±

Γq(z) = Γ(z), lim
q→1±

ψq(z) = ψ(z), Γq(z) = q(
z−1
2 )Γ1/q(z).

The proofs of the above limits can be found in [2, Appendix A], [3, pp. 493–496],
[5, p. 17], and [9, Appendix B].

Recall from [10, Chapter XIII], [28, Chapter 1], and [29, Chapter IV] that a
function f is said to be completely monotonic on an interval I if f has derivatives
of all orders on I and

0 ≤ (−1)nf (n)(x) <∞
for x ∈ I and n ≥ 0. In [29, p. 161, Theorem 12b], it was stated that a necessary
and sufficient condition that f(x) should be completely monotonic for 0 < x < ∞
is that

f(x) =

∫ ∞
0

e−xt dα(t),

where α(t) is non-decreasing and the integral converges for 0 < x < ∞. In other
words, a function is completely monotonic on (0,∞) if and only if it is a Laplace
transform.

2. Comments

For x > 0, let

f(x) = ψ′(x)− 1

x
− 1

2x2
. (2.1)

In recent years, the complete monotonicity of the function (2.1) was proved, gener-
alized, and applied in [1, 4, 7, 8, 11, 17, 19], [13, Theorem 1.1], [20, Theorem 1.3],
[21, pp. 1977–1978], [22, Theorem 2]. For more information on this topic, please
refer to related texts in the survey articles [15, 16, 24, 26, 27] and closely related
references therein.
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For x > 0 and 0 < q < 1, let

fq(x) = ψ′q(x)− (1− q)qx

1− qx
− 1

2

[
(1− q)qx

1− qx

]2

. (2.2)

It is clear that

lim
q→1−

fq(x) = f(x).

So, we may regard fq(x) as the q-analogue of the function f(x).
In the paper [14], the complete monotonicity of fq(x) for 0 < q < 1 on (0,∞)

was verified.

Theorem 2.1 ([14, Theorem 1.1]). For 0 < q < 1, the function fq(x) defined
by (2.2) is completely monotonic on (0,∞).

In [30], the author imitated the paper [14], considered an alternative q-analogue

Fq(x) = ψ′q(x)− 1− q
1− qx

− 1

2

(
1− q
1− qx

)2

+
1

2
(1− q)(3− q) (2.3)

of the function f(x) in (2.1), and confirmed that the function Fq(x) for q ∈ (0, 1)
is completely monotonic on (0,∞).

Theorem 2.2 ([30, Theorem 1]). For 0 < q < 1, the function Fq(x) defined by (2.3)
is completely monotonic on (0,∞).

To a great extent, the function Fq(x) considered in [30] is a more natural
q-analogue of the function f(x) in (2.1), because the factor

1− qz

1− q
,

denoted by [z]q in [6, 23], is, but the factor

1− qz

(1− q)qz

is not, the usually adopted q-analogue of z ∈ C for q 6= 1. For q 6= 1, the quantity
[z]q may be called a q-number, a basic number, a q-analogue, a q-deformation, a
q-extension, or a q-generalization of the complex number z. See [6, Eqs. (1.2.13)
and (1.2.43)].

We also observe that the difference

fq(x)− Fq(x) =
(1− q)2qx

1− qx

is completely monotonic on (0,∞), which implies that the result obtained in [30] is
surely better than the one in [14].

Basing on the above points, we do not simply think that the lately published
paper [30] is a plagiarism of the formerly published paper [14]. However, after all,
a high and heavy imitation is not good and appropriate behaviour in academic
community.
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3. Corrected proof of Theorem 2.1

Some errors appeared on page 112 in the proof of [14, Theorem 1.1]. We are now
in a position to provide a corrected proof of [14, Theorem 1.1] as follows.

As did in the proof of [14, Theorem 1.1], a straightforward computation gives

fq(x)− fq(x+ 1) =

∞∑
k=0

{[
(1− q)k

2
+ 1

]
(1− q)

(
qk+1 − 1

)
+ (k + 1)(ln q)2

}
q(k+1)x.

Let

gq(t) =
1

2
(1− q)[(1− q)(t− 1) + 2]

(
qt − 1

)
+ (ln q)2t

for 0 < q < 1 and t ∈ [1,∞). Then

g′q(t) = (ln q)2 +
1

2
(ln q)(q − 1)[(q − 1)(t− 1)− 2]qt +

1

2
(1− q)2

(
qt − 1

)
,

g′′q (t) =
1

2
(ln q)(q − 1)qt

[
(q − 1)t ln q + 2(q − 1)− (q + 1) ln q

]
,

1

2
(ln q)(q − 1)qtϕ(t, q),

where ϕ(t, q) satisfies

ϕ(1, q) = 2(q − 1− ln q) and
dϕ(1, q)

d q
= 2

(
1− 1

q

)
< 0.

Since ϕ(1, q) is decreasing with respect to q ∈ (0, 1) and ϕ(1, 1) = 0, so ϕ(1, q) > 0
for q ∈ (0, 1). It is obvious that ϕ(t, q) is increasing with respect to t, so ϕ(t, q) > 0
for (t, q) ∈ [1,∞)× (0, 1). Hence, the second derivative g′′q (t) is positive for (t, q) ∈
[1,∞)× (0, 1) and g′q(t) is increasing with respect to t ∈ [1,∞). Making use of the
easily verified double inequality

1

2

(
q − 1

q

)
< ln q < q − 1, q ∈ (0, 1), (3.1)

we have

g′q(1) =
1

2

[
(q − 1)3 + 2(log q)2 − 2q(q − 1) ln q

]
>

1

2

[
(q − 1)3 + 2(q − 1)2 − 2q(q − 1) ln q

]
=

1

2
(q − 1)

(
q2 − 2q ln q − 1

)
> 0,

we obtain g′q(t) > 0 for (t, q) ∈ (1,∞) × (0, 1). As a result, the function gq(t) for
0 < q < 1 is increasing with respect to t ∈ [1,∞). By (3.1), it is easy to see that

gq(1) = (ln q)2 − (q − 1)2 > 0
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for q ∈ (0, 1). Accordingly, the function gq(t) is positive for (t, q) ∈ [1,∞)× (0, 1).
Consequently,

[fq(x)− fq(x+ 1)](i−1) = (ln q)i−1

{[
(ln q)2 − (1− q)2

]
qx

+

∞∑
k=1

(k + 1)i−1
[
gq(k + 1) + (1− q)2

(
1− qk+1

)]
q(k+1)x

}
for i ∈ N. This means that

(−1)i−1[fq(x)− fq(x+ 1)](i−1) = (−1)i−1(ln q)i−1

{[
(ln q)2 − (1− q)2

]
qx

+

∞∑
k=1

(k + 1)i−1
[
gq(k + 1) + (1− q)2

(
1− qk+1

)]
q(k+1)x

}
> 0

which can be rearranged as

(−1)i−1[fq(x)](i−1) > (−1)i−1[fq(x+ 1)](i−1).

By induction and [14, Lemma 2.4] which reads that

lim
x→∞

[fq(x)](i−1) = 0

for 0 < q < 1 and i ∈ N, it follows that

(−1)i−1[fq(x)](i−1) > (−1)i−1[fq(x+ 1)](i−1) > (−1)i−1[fq(x+ 2)](i−1) > · · ·

> (−1)i−1[fq(x+ k)](i−1) ≥ (−1)i−1 lim
k→∞

[fq(x+ k)](i−1) = 0

for (i, k) ∈ N2. Consequently, the function fq(x) for 0 < q < 1 is completely
monotonic on (0,∞). The proof of Theorem 2.1 is complete.

Remark 1. This paper is a slightly modified version of the preprint [25].
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in Croatia, and Dr. Kwara Nantomah at University for Development Studies in
Ghana for their concerns on the papers [14, 30].

The authors appreciate the anonymous referees for their careful corrections to
and valuable comments on the original version of this paper.

References

[1] G. D. Anderson, R. W. Barnard, K. C. Richards, M. K. Vamanamurthy, and M. Vuorinen,

Inequalities for zero-balanced hypergeometric functions, Trans. Amer. Math. Soc. 347 (1995),

no. 5, 1713–1723; Available online at http://dx.doi.org/10.2307/2154966.
[2] G. E. Andrews, q-Series: Their Development and Application in Analysis, Number Theory,

Combinatorics, Physics and Computer Algebra, CBMS Regional Conference Series in Math-

ematics 66; Published for the Conference Board of the Mathematical Sciences, Washington,
DC; by the American Mathematical Society, Providence, RI, 1986.

[3] G. E. Andrews, R. A. Askey, and R. Roy, Special Functions, Encyclopedia of Mathematics
and its Applications 71, Cambridge University Press, Cambridge, 1999; Available online at

http://dx.doi.org/10.1017/CBO9781107325937.

[4] C.-P. Chen and F. Qi, Logarithmically completely monotonic functions relating to the gamma
function, J. Math. Anal. Appl. 321 (2006), no. 1, 405–411; Available online at http://dx.

doi.org/10.1016/j.jmaa.2005.08.056.

http://dx.doi.org/10.2307/2154966
http://dx.doi.org/10.1017/CBO9781107325937
http://dx.doi.org/10.1016/j.jmaa.2005.08.056
http://dx.doi.org/10.1016/j.jmaa.2005.08.056


216 FENG QI, FANG-FANG LIU, XIAO-TING SHI

[5] G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and

its Applications 35, Cambridge University Press, Cambridge, 1990.

[6] G. Gasper and M. Rahman, Basic Hypergeometric Series, 2nd ed., Encyclopedia of Math-
ematics and its Applications 96, Cambridge University Press, Cambridge, 2004; Available

online at http://dx.doi.org/10.1017/CBO9780511526251.

[7] M. E. H. Ismail, L. Lorch, and M. E. Muldoon, Completely monotonic functions associated
with the gamma function and its q-analogues, J. Math. Anal. Appl. 116 (1986), 1–9; Available

online at http://dx.doi.org/10.1016/0022-247X(86)90042-9.

[8] M. E. H. Ismail and M. E. Muldoon, Inequalities and monotonicity properties for gamma and
q-gamma functions, in: R.V.M. Zahar (Ed.), Approximation and Computation: A Festschrift

in Honour of Walter Gautschi, ISNM, Vol. 119, BirkhRauser, Basel, 1994, 309–323. A cor-

rected version is available online at http://arxiv.org/abs/1301.1749.
[9] T. H. Koornwinder, Jacobi functions as limit cases of q-ultraspherical polynomials, J. Math.

Anal. Appl. 148 (1990), no. 1, 44–54; Available online at http://dx.doi.org/10.1016/

0022-247X(90)90026-C.
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