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NEW GENERAL INTEGRAL INEQUALITIES FOR
LIPSCHITZIAN FUNCTIONS VIA RIEMANN-LIOUVILLE
FRACTIONAL INTEGRALS AND APPLICATIONS

IMDAT ISCAN, MEHMET KUNT*, NAZLI YAZICI GOZUTOK, TUNCAY KOROGLU

ABSTRACT. In this paper, we obtain some new estimates on generalization of
Hermite-Hadamard, Ostorowski and Simpson type inequalities for Lipschitzian
functions via Riemann-Liouville fractional integrals. Also, we give some appli-
cations to special means of two positive real numbers.

1. INTRODUCTION

In recent years, many authors have studied errors estimations for Hermite-
Hadamard, Ostorowski and Simpson type inequalities, see [T}, 2] 3, [, [7], [T4].

But this inequalities rarely studied for M-Lipschitzian functions. In our obser-
vation, some works for this subject as follows:

In [5], Dragomir et. al. give some inequalities of Hadamard’s type for M-
Lipschitzian functions and give some applications which are connected some spe-
cial means of two positive numbers. In [2I], Yang and Tseng establish several
inequalities of Hadamard’s type for Lipschitzian mappings. In [17, [I8], Wang study
several inequalities of Hadamard’s type for Lipschitzian mappings and give some
applications. In [I6], Tseng et. al. establish some Hermite-type and Bullen-type in-
equalities for Lipschitzian functions and give several applications for special means.
In [6], Hwang et. al. establish some Hadamard-type inequalities for Lipschitzian
functions in one and two variables and give several applications for special means.
In [11], i§can study Hadamard, Ostorowski and Simpson type inequalities for Lips-
chitzian functions via Hadamard fractional integrals and give some applications to
special means of positive real numbers.

Because of the wide application of Hermite-Hadamard type inequalities and frac-
tional integrals, many researchers extend their studies to Hermite-Hadamard type
inequalities involving fractional integrals not limited to integer integrals. Recently,
more and more Hermite-Hadamard inequalities involving fractional integrals have
been obtained for different classes of functions; see [8 @, [I5] 19} 20].
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In this work, we study Hadamard, Ostorowski and Simpson type inequalities
for Lipschitzian functions via Riemann-Liouville fractional integrals and give some
applications to special means of positive real numbers.

2. PRELIMINARIES AND GENERAL CONDITIONS

Let a real function f be defined on some nonempty interval I of real line R. The
function f is said to be convex on I if inequality

flz+ (A —-t)y) <tf(@)+ 1 —-1)f(y)
holds for all z,y € I and t € [0,1].
The following inequalities are well known in the literature as Hermite-Hadamard,
Ostorowski and Simpson inequalities respectively.

Theorem 1. Let f: I CR — R be a convex function defined on the interval I of
real numbers and a,b € I with a < b. The following double inequality holds:

2.1) f (a;b> < ia/abf(x)dx < @)+ )

2

Theorem 2. Let f : I C R — R be a mapping differentiable in 1°, the interior
of I, and let a,b € I° with a < b. If |f' (z)] < M, z € [a,b]; then the following
inequality holds:

-yt [ rwa <

for all x € [a,b)].

(2.2)

M |(z—a)®+(b—x)
—a 2

Theorem 3. Let f : [a,b] = R be four times continuously differentiable mapping
on (a,b) and ||f(4)HOO = SUPge(a,b) ‘f(4) (z)| < co. Then the following inequality

holds:
L@ IO oy (110)) [

The following definition of M-Lipschitzian function is well known in the litera-
ture.

B [

2.
(23) 2880

(b—a)'.

Definition 1. A function f: I CR — R called an M -Lipschitzian function on the
interval I of real numbers with M > 0 if

(24) |f(@)—fWI<Mlz—y|
forall x,y € 1.

The following definitions and mathematical preliminaries of fractional calculus
theory are used further in this paper.

Definition 2. [I3]. Let f € La,b]. The Riemann-Liouville fractional integrals
J&f and J3 f of order oo > 0 with a > 0 are defined by

I f@) = g [ o= 07 0 2> a

and

b
J5 f(x) = ﬁ/ (t—a)* ' f(t)dt, z<b
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[ee]

respectively, where T'(a) is the Gamma function defined by T'(« f et 1dt and
0

T f(@) = J)_f(z) = f(2).

In [10], Iscan give the definition of harmonically convex functions and establish
the following Hermite-Hadamard type inequality for harmonically convex functions.

Definition 3. Let I C R\ {0} be a real interval. A function f:I — R is said to
be harmonically convez, if

25 1 (g ) S+ 1@

forall z,y € I and t € [0,1]. If the inequality in (2.5)) is reversed, then f is said to
be harmonically concave.

Theorem 4. [10]. Let f: 1 C R\ {0} = R be a harmonically convex function and
a,b € I with a <b. If f € L[a,b] then the following inequalities holds:

(2.6) f(2ab>b_a/f dt < );f(b).

In [12], Kunt et al. establish Hermite-Hadamard’s inequalities for harmonically
convex functions in Riemann-Liouville fractional integral forms as follows:

Theorem 5. Let f : I C (0,00) — R be a function such that f € L][a,b], where
a,b € T with a < b. If f is a harmonically convex function on [a,b], then the
following inequalities for fractional integrals holds:

2ab T(a+1) [ ab \*[ Jew (feg)(/a) f(a)+ f(b)
a+b>< pl-a (b—a> {+Jm (Foqyfb) (= 2

(2.7) f(
with o > 0 and g(z) = 1/z, v € [§,1].

3. GENERAL RESULTS

Let I C (0,00) be a real interval and f : I — R be a M-Lipschitzian function on
I; throughout this section, we will take

(3.1) If(z, A\ a,a,b)=(1-2X) Kl - 1>a + (1 - ;)a] f(x)

alr@(i-1) wro(2-3)]
“T(a+1) [J2, (Fog) (1/a) +J2_(fo9)(1/0)]

32 8/(myaat) = @)+ 1)~ (725 ) Tla+1)

% [T, (Fog)(1/a)+ T8 (fog)(1/b)]

where a,b € I with a < b, z,y € [a,b], g(t) = 1/t, A € [0,1], @ > 0 and T is Euler
Gamma function.
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Theorem 6. Let f : I C (0,00) — R be a M-Lipschitzian function on I and
a,b € I with a < b. Then for all x € [a,b], X € [0,1] and a > 0 we have the
following inequality for Riemann-Liouville fractional integrals

(3.3) |If(x,)\,a7a,b)|<M{[(1—)\)x—/\a} (i—i)a
fa(2r— 1)/1‘11 ((11 t)a_l %dtJr[)\b—(lf)\)z]

1 1\¢ s 1n\N*t1
- 1—2) t— = —dth .

Proof. Since f is a M-Lipschitzian function, then we have the following inequality

e e o
alr@(i-1) +re(-1)]

“T(a+1)[J, (Fog) (La)+ I3 (Fog) (1/0)]|

(-2 e ff () ()
() el (1) ()
(-2 e (o) o)
ORI SHIOE
ga(1—A){/f’ (i—t)al f(x)—fC)‘dt
L b))

s [ (20 s (3)] o

L o)
1

s (z, A o, a,b)| =

2

+A
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M{ FE-)7(a)e
ACONCORS

b
By a simple computation from this inequality we have the inequality (3.3]). This
O

completes the proof.
Corollary 7. In Theorem[6] if one takes A = 0, then one has

o (G2l Gmil (e )Ty adh (e
x[J5, (Feg) (1/a) + T2 (fog) (1)
<oe (57) PlG-2) - (G-3) ]
vl [0 e [T (L) ;dt] }
In (34), b '

(1) If one takes o = 1, then one has

a b
65 1@ -3 [ Ll

(2) If one takes x = %, then one has

36) |f <a2ibb) - F(;_tl) <bciba>a

o atb a—1 1 a—1
M _(ab ", /” po 1 1cht—/ o) Ll
b t ats \ @ t

— 2l \ph—q 1
b

<M

a z(a+0b) ab
il el S i
b—a{ ab +nx2}’

[e3
Ja+b
2

i, (fo9)(1/a)
+J2_ (fog) (1/)

(3) If one takes o =1 and x = %, then one has
ab  (a+0b)?

2ab ab Y f(t)
(37) f<a+b)_b—a_/a 12 di| < Myp—_In 4ab

b—a
Corollary 8. In Theorem|[6] if one takes A =1, then one has

oy LB BT () Ll ()
X [J§+ (fog)(1/a)+J? (fog)(l/b)”
B (- (Y

in @3,
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(1) If one takes x = +b, then one has

‘f(a);rf(b) RCES) (bciba)a

x[J8s, (Fog) (1/a) + I8 _(fog) (1/b)]|
< (520) {00 ()
L) e 7 (3) )

(2) If one takes a« =1 and x = %, then one has

fl@+f®) ab [Pt ab [ (b—a)? 4ab
2 b-a), dt<Mb a{ 2ab +ln(a+b)2}'

Remark. In (3.6) and (3.7) we get new inequalities about the left hand side of

Hermite-Hadamard’s inequalities of (2.7) and (2.6), in (3.9) and (3.10) we get new
inequalities about the right hand side of Hermite-Hadamard’s inequalities of (2.7)
and (2.6) respectively for M-Lipschitzian functions.

+a«

(3.10)

Corollary 9. In Theorem@
(1) If one takes A = g = %, then one has

o [j [Hes e (35)] - 55 (725)
%[5, (Fog) (1/a) + I8 _(fog) (1/b)]|
<o () {50 ()
([ ety e L) )

Specially if one takes o =1 in (3.11)), then one has

1[f(a)+ f(b) 2ab ab
(3.12) 3[2 2f<a+b>}b—
ab [(b—a)? 1. (a+0b)?
<Mb—a{ 6ab 3" dab }
(2) If one takes A = 3, © :%, then one has
1[f(a)+ f(b) 2ab I'a+1)
s [ [P ()] R (6 )

b

x| %+(fog)(1/a)+J%,(fog a/m)]| =
Specially if one takes a =1 in , then one has

Hf(a);f(b)+f<2ab)] b_a/f dt

(3.14)
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Corollary 10. In Theorem[f], if one takes o =1, then one has

f@G-2)+70)(G-3) ab " f (1)
(3.15) |(1=A) f(z)+ A s b 7b—a/a ot
b
gMbaa{[(l—)\)x—)\a](i—i)—i—[)\b—(l—)\)x](i—ll))
+(2)\—1)1nzz}.
Specially, if one takes x = fﬂ mn , then one has
2ab fla)+f®)] _ _ab ["f()
(3.16) (1—/\)f<a+b)+>\[ ! }—b_a/a o

== b (a+b)°

Remark. If we take A\=0, A\=1, A\=1% and \ = % in inequality (3.16]) we obtain
inequalities (3.7)), (3.10]), (3.12) and (3.14)), respectively.

Let f: I C (0,00) — R be a M-Lipschitzian function on I and a,b € I with
a < b. In the next Theorem a < z < y < b and define U, (x,y), a > 0 as follows:
(1) Ifagji_‘_igxgygb,then

o -2 () -2 (552) - ()]

/i - a1dt+/1 1 aldt/‘;ﬁ 1 aﬂﬁ
atb \ @ t 1 b t 1 b t’
2ab b y

(2)Ifa§m§%§y§b,then

o o= p(52) ()] 2B CRY - (5)]

2
<2 {A(b_a) +(2A—1)In 220 }
a 2a

<

-

(319) Ua () = g {2 (xa_ﬂca>a - (b2;ba>a] - % <b2;ba>a
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Theorem 11. Let x,y, «, U, (x,y) and function f be defined as above. Then we
have following inequality for Riemann-Louville fractional integrals

2ab \“
3:20) 187 (v d) < Ma (20 Ui (o).

Proof. Since f is a M-Lipschitzian function, then we have the following inequality

9 «@
(321) |Sf (1‘7yaa7a7b)‘ =a (b ilba>

b—a\%

b—a)® b-a
(2ab) f(x)+<21§) f(y)

«

T (a) [J2u, (fog) (1/a) +J52_,_(Foq)(1/0)]|

aboc 1 a—1
. <b2izba) / (i _ t) f (@) dt

atb : 1 1 a—1 1
T e [ ) ()
¥ (i)

o—

2ab (

a+b

2ab
(-

1
1

2
o—

)
)

W\

Using (3.17)), (3. 18|) and (3.19)), by a simple calculations, we have

1 a—1 atb a—1
) 1 1 2ab 1
3.22 ——1 ——|dt t— —
o2 [ (o) bl ()

Now using (3.21)) and (3.22)) we obtain (3.20). This completes the proof. O

With using assumptions of Theorem [I1] we have the following corollary and
remarks.

Corollary 12. In Theorem if one takes a = 1, then the inequality (3.20)) reduces
the following inequality

F@)+f ) -2 / 1O | <

Remark. In Theorem if one takes x = y = 21%, then the inequality -
3.6)

reduces the inequality (3.6

1

)

H

1
y—t‘dtzUa(ﬂc,y)-

(3.23)

2ab
w20, ().

Remark. In Theorem if one takes x = a and y = b, then the inequality (3.20)
reduces the inequality (3.9)
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4. APPLICATIONS TO SPECIAL MEANS
Let us recall the following special means of positive numbers a, b with a < b.
(1) The arithmetic mean:
a+b
2 )
(2) The geometric mean:
(4.2) G =G(a,b):=Vab,

(3) The harmonic mean:

(4.1) A=A(ab):=

2ab
43) H=H (ab):=——
43) (0,0) = 22
(4) The logarithmic mean:
b—a
4.4 L=L(ab) = ———
(44) (a,) Inb—Ina’

(5) The identric mean:
1\
4. I1=1 =—-| — .
45 1=1@n =1 ()

We need the following lemma to prove the results of this section.

Lemma 13. (see [16]). Let f : [a,b] — R be differentiable with ||f'|| ., < co. Then
f is a M-Lipschitzian function on [a,b] where M = || f'|| .

Proposition 14. For b >a >0, A € [0,1] and n > 1, we have

L (anfl7 bnfl)
4. 1—X) H" (a,b) + A (a™, V") — ab————~
(40) (1= X H" (0.0 £ AA (") — b
_ b—a ab H (a,b)

< nb ! 22 -1 1 O

< nb {)\ 2 +(2A )banA(a,b)}
Proof. The proof follows by inequality (3.16)) applied for the Lipschitzian function
f(x)=2a" on [a,b)]. O

Remark. Let A = 0 and A = 1 in inequality (4.6). Then, using inequality (2.6,
one has the following inequalities respectively,

L(an—l’bn—l)
L(a,b)
L (a0t b—a ab H (a,b)
4. < A(a",b") —ab——+—~——~ < nb"! 1 b
(48) 0< A(a™,b")—ab L(ab) <nb { 5 +b—anA(a,b)}
Proposition 15. Forb>a >0 and A € [0,1], one has
(4.9) ‘(1 — \) H? (a,b) (@) 1 x4 (a®e®,b%e’) — abL (e, eb)‘
ab H (a,b)
1 .
b—a Al(a,b) }

Proof. The proof follows by inequality (3.16) applied for the Lipschitzian function
f(z) = 22%e® on [a, b]. O

ab ! H (a,b)

4. <
4.7) 0<ab bfanA(a,b)’

— H" (a,b) < —nb"?

< (26+0%) € {)\b;a +(2A-1)
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Remark. Let A = 0 and A = 1 in inequality (4.9). Then, using inequality (2.6)),
one has the following inequalities respectively,
p ab lnH(a’b),

b—a  Af(a,b)

(4.10) 0 < abL (e, eb) — H?(a,b) ef(@) < (2b+b) e

b— b H (a,b
(4.11) 0 < A (a®e", erb) —abL (e, eb) < (20 +b%) el { 5 . b(i . In " ((Z:b)) } .
Proposition 16. For b >a >0 and X € [0, 1], one has

(4.12) |(1=X) H (a,b) + AA (a,b) — abL™" (a,b)|

b—a ab H (a,b)
< A—— 220 —1 1 .
<A 2 +(2A )b—anA(aJ))
Proof. The proof follows by inequality (3.16) applied for the Lipschitzian function
f(z) =2 on [a,b]. O

Remark. Let A =0 and A\ = 1 in inequality (4.12)). Then, using inequality (2.6,
one has the following inequalities respectively,

ab 1nH(a,b)
b—a A(a,b)’

(4.13) 0 <abL ™ *(a,b) — H (a,b) < —

B b—a ab H (a,b)
. < _ 1 < ’ .
(4.14) 0= Afa,b) =abL™ (a,b) < 5=+ = In 7

Proposition 17. Forb>a >0 and X € [0, 1], one has

(4.15) [(1=)X)H (a,b)InH (a,b) + A (alna,blnb) —

<Ineb “ba {A(b_a)z +(2A— 1)1nH(“’b)}.

ab 1;1 abL_l (a,b)

b— 2ab Ala,b)

Proof. The proof follows by inequality (3.16)) applied for the Lipschitzian function
f(x) =2xInz on [a,b]. O

Remark. Let A =0 and A = 1 in inequality (4.15)). Then, using inequality (2.6)),
one has the following inequalities respectively,

ablnab __ ab H (a,b)
41 < Lt —H(a,b)lnH < -1 1 :
(4.16) 0< 2 (a,b) (a,0)In H (a,b) < nebb—a " Af(a,b)’
ablnab b—a ab H (a,b)
. < - = '
(4.17) 0< A(alna,blnbd) 5 L (a,b)_lneb{ 5 +b—alnA(a,b)}

Proposition 18. Forb>a > 0 and X € [0, 1], we have
(4.18) |(1—X)H? (a,b)InH (a,b) + AA (a*Ina,b*Inb) — abln I (a,b)|

< (b+ 2bInb) b“ba {A(b%a)Q + @A — 1) @Y }

b Al(a,b)

Proof. The proof follows by inequality (3.16)) applied for the Lipschitzian function
f(z) =2%Inz on [a,b)]. O
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Remark. Let A =0 and A\ = 1 in inequality (4.18)). Then, using inequality (2.6)),
one has the following inequalities respectively,

(4.19) 0 <

ablnadb _, 2 ab (@,))
ablnab B < — T In——/——=
5 L7 (a,b)=H"(a,b) In H (a,b) < (b+2blnb)b—alnA(a,b)7

(4.20) 0< A(a’Ina,b*Inb) —ablnl (a,b)

(1]

2]

(3]

(4]

(5]

[6]

(7]

(8]
(9]
[10]
(11]

(12]

(13]
(14]

(15]

[16]

(17]

(18]

b— b Hab
g(b+2blnb){ 2“+baa1nA((Zb))}.
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