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ON GENERALIZATION OF RAMANUJAN’S PARTIAL THETA

FUNCTION IDENTITIES

S. AHMAD ALI

Abstract. In the present paper, using a known three term relation of 3ϕ2’s,

a partial theta function identity of Ramanujan has been generalized. Some

application our new identity has also been shown.

1. Introduction

Ramanujan [4] has given many partial theta function identities of the type

∞∑
n=0

qn

(−αq)n(−βq)n
+

α−1
∞∑

n=0
qn(n+1)/2(−β/α)n

∞∏
j=1

(1 + αqj)(1 + βqj)

= (1 + α−1)

∞∑
n=0

qn(n+1)/2(−β/α)n

(−βq)n
, (1.1)

which have been deduced by Andrew’s from one of his key formula [2, Eq. (3.1),
p. 141]. Later, Agarwal [1] showed that Andrews key formula which houses many
identities of the type (1.1) can be placed in a well known basic hypergeometric
setting, and is open for further extension. Agarwal, in the same paper, also showed
the effectiveness of Sears [5] three terms and four terms relations in the study of
partial theta function identities. Agarwal [1], in fact, suggested a systematic study
of all such three terms and four terms relations and remarked that because of
application of these identities in partition it is expected that such a study would
be very fruitful.

The presents work is motivated by Agarwal’s remark and supplements his work
[1]. In Section 2, we give a generalization of (1.1) in the form of identity (2.2). In
Section 3, we give some applications of our new identity (2.2).
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As usual, we shall use the standard notation, a basic hypergeometric series is
defined as

r+1ϕr(a1, a2, a3....ar+1; b1, b2, b3......br; q, z) =
∞∑

n=0

(a1; qk)n(a2; qk)n....(ar+1; qk)n
(qk; qk)n(b1; qk)n(b2; qk)n....(br; qk)n

zn,

which converges for |q| < 1, |z| < 1. In the above definition (a; qk)n is q−shifted
factorial, defined for |qk| < 1 as

(a; qk)n = (1− a)(1− aq)...........(1− aqk(n−1)); (a; qk)0 = 1.

Also

(a; qk)∞ =

∞∏
j=0

(1− aqj).

To abbreviate our notations, we shall write

(a1, a2, ....., ar; qk) = (a1; qk)n(a2; qk)n....(ar; qk)n,

and when q = 1, we shall write (a; q) = (a)n.

2. A Generalization of Ramanujan’s Partial Theta Function Identity

Let us consider the following three term relation [3, Ex. 3.6, p. 92]

3ϕ2(a, b, c; d, f ; q; q)

+
(q/f, a, b, c, dq/f)∞

(f/q, aq/f, bq/f, cq/f, d)∞
3ϕ2(aq/f, bq/f, cq/f ; q2/f, dq/f ; q; q)

=
(q/f, abq/f, acq/f, d/a)∞

(d, aq/f, bq/f, cq/f)∞
3ϕ2(a, aq/f, abcq/df ; abq/f, acq/f ; q; d/a). (2.1)

If we take a = q in (2.1), we get

∞∑
n=0

(b)n(c)nq
n

(d)n(f)n
+

(q/f, q, b, c, dq/f)∞
(f/q, q2/f, bq/f, cq/f, d)∞

2ϕ1(bq/f, cq/f ; dq/f ; q; q)

=
(1− q/f)(1− d/q)

(1− bq/f)(1− cq/f)

∞∑
n=0

(q2/f)n(bcq2/df)n(d/q)n

(bq2/f)n(cq2/f)n
.

Now, transforming the 2ϕ1(..) on the left using the following transformation due to
Sears [5]

2ϕ1(a, b; c; q;x) =
(b, ax)∞
(x, c)∞

2ϕ1(b/c, x; ax; q; b),

we obtain

∞∑
n=0

(b)n(c)nq
n

(d)n(f)n
+

(1− q/f) (b, c)∞
(1− bq/f) (f/q, d)∞

∞∑
n=0

(d/c)n(cq/f)n

(bq2/f)n

=
(1− q/f)(1− d/q)

(1− bq/f)(1− cq/f)

∞∑
n=0

(q2/f)n(bcq2/df)n(d/q)n

(bq2/f)n(cq2/f)n
. (2.2)
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Also, transforming the series on right in (2.2) using a known transformation [5, Eq.
(10.1), p.174]

∞∑
n=0

(a1)n(a2)n
(b1)n(b2)n

(b1b2/a1a2q)
n =

(b2/q, b1b2/a1a2)∞
(b2, b1b2/a1a2q)∞

∞∑
n=0

(b1/a1)n(b1/a2)n
(b1)n(b1b2/a1a2)n

(b2/q)
n,

we get

∞∑
n=0

(b)n(c)nq
n

(d)n(f)n
+

(1− q/f)(b, c)∞
(1− bq/f)(f/q, d)∞

∞∑
n=0

(d/c)n(cq/f)n

(bq2/f)n

=
(1− q/f)

(1− bq/f)

∞∑
n=0

(b)n(d/c)n(cq/f)n

(bq2/f)n(d)n
. (2.3)

In (2.3) taking b→ 0 and c→ 0, and then d = −βq and f = −αq, we get

∞∑
n=0

qn

(−αq)n(−βq)n
+

α−1
∞∑

n=0
qn(n+1)/2(−β/α)n

∞∏
j=1

(1 + αqj)(1 + βqj)
= (1 + α−1)

∞∑
n=0

qn(n+1)/2(−β/α)n

(−βq)n
,

which is precisely Ramanujan’s partial theta function identity appearing in his
‘Lost’ Notebook (see[2, Eq. (3.6), p. 144]).

3. SOME APPLICATIONS OF (2.2)-(2.3)

Replacing d and f respectively by Aq and q/A in (2.2), we get

∞∑
n=0

(b)n(c)nq
n

(−Aq)n(−q/A)n
+
A(1 +Ab)−1(b, c)∞

(−q/A,−Aq)∞

∞∑
n=0

(−Aq/c)n(−Ac)n

(−Abq)n

=
(1 +A)2

(1 +Ab)(1 +Ac)

∞∑
n=0

(−Aq)n(bc)n(−A)n

(−Abq)n(−Acq)n
. (3.1)

For b→ 0 and c→ 0 in (3.1), we get

∞∑
n=0

qn

(−Aq)n(−q/A)n
+

A

(−q/A,−Aq)∞

∞∑
n=0

(−1)nqn(n+1)/2A2n

= (1 +A)2
∞∑

n=0

(−Aq)n(−A)n. (3.2)

In (3.1), if b and c are respectively replaced by B and −B, we get

∞∑
n=0

(B2; q2)nq
n

(−Aq)n(−q/A)n
+
A(1 +AB)−1(B2; q2)∞

(−q/A,−Aq)∞

∞∑
n=0

(Aq/B)n(AB)n

(−ABq)n

=
(1 +A)2

(1−A2B2)

∞∑
n=0

(−Aq)n(−B2)n(−A)n

(−ABq)n(ABq)n
. (3.3)

In (3.3), if we take B → 0, we get (3.2).
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Lastly, taking b = ABq, c = −ABq, d = −Aq, f = −Bq in (2.1), we get after
simplification

∞∑
n=0

(ABq; q2)nq
n

(−Aq)n(−Bq)n
+

(1 + 1/B)(ABq,−ABq)∞
(1 +Aq)(−B,−Aq)∞

∞∑
n=0

(1/B)n(Aq)n

(−Aq2)n

=
(1 + 1/B)(1 +A)

(1 +Aq)(1−Aq)

∞∑
n=0

(−q/B)n(−ABq2)n(−A)n

(Aq)n(−Aq2)n
. (3.4)
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