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ON GENERALIZATION OF RAMANUJAN’S PARTIAL THETA
FUNCTION IDENTITIES

S. AHMAD ALI

ABSTRACT. In the present paper, using a known three term relation of 3¢p2’s,
a partial theta function identity of Ramanujan has been generalized. Some
application our new identity has also been shown.

1. INTRODUCTION

Ramanujan [4] has given many partial theta function identities of the type
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which have been deduced by Andrew’s from one of his key formula [2, Eq. (3.1),
p. 141]. Later, Agarwal [I] showed that Andrews key formula which houses many
identities of the type (1.1) can be placed in a well known basic hypergeometric
setting, and is open for further extension. Agarwal, in the same paper, also showed
the effectiveness of Sears [5] three terms and four terms relations in the study of
partial theta function identities. Agarwal [1], in fact, suggested a systematic study
of all such three terms and four terms relations and remarked that because of
application of these identities in partition it is expected that such a study would
be very fruitful.

The presents work is motivated by Agarwal’s remark and supplements his work
M. In Section 2, we give a generalization of (1.1)) in the form of identity (2.2)). In
Section 3, we give some applications of our new identity (2.2]).
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As usual, we shall use the standard notation, a basic hypergeometric series is
defined as

r+19r (a1, a2, a3....ap41; b1, ba, b3 by g, 2) =

i (a1;¢")n(az; " )n-...(ar 4156 n
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which converges for |q| < 1, |2] < 1. In the above definition (a;q*),, is g—shifted
factorial, defined for |¢F| < 1 as

(a;¢") = (1 —a)1 —aq)........... (1- aqk(”fl)); (a;¢%)o = 1.
Also
(a:¢")0e = [T(1 = ad?).
7=0

To abbreviate our notations, we shall write

(a1,a2, ey ar; ) = (a15¢%)n(az; ¢")neer(ar; ¢,

and when ¢ = 1, we shall write (a;q) = (a)n.
2. A GENERALIZATION OF RAMANUJAN’S PARTIAL THETA FUNCTION IDENTITY

Let us consider the following three term relation [3, Ex. 3.6, p. 92]
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If we take a = ¢ in (2.1)), we get
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Now, transforming the 21 (..) on the left using the following transformation due to
Sears [5]
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Also, transforming the series on right in (2.2]) using a known transformation [5, Eq.
(10.1), p.174]
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In (2.3)) taking b — 0 and ¢ — 0, and then d = —f¢ and f = —aq, we get

(2.3)
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which is precisely Ramanujan’s partial theta function identity appearing in his
‘Lost’ Notebook (see[2, Eq. (3.6), p. 144]).

3. SOME APPLICATIONS OF (2.2)-(2.3)
Replacing d and f respectively by Ag and ¢/A in (2.2)), we get

- (b)n(c)ng" A(1+Ab)_1(bac)oo - (=Ag/c)n(=Ac)”
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For b — 0 and ¢ — 0 in , we get
>, ST 2 (SayrgrrheA
=(1+ A)Qi(—Aq)n(—A)". (3.2)
n=0
In , if b and c are respectively replaced by B and —B, we get
i (B%4*)ng" | AL+ AB) ' (B%¢*)x i (Ag/B)n(AB)"
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In (3.3)), if we take B — 0, we get (3.2)).
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Lastly, taking b = ABq, ¢c = —ABq, d = —Aq, f = —Bq in (2.1]), we get after
simplification

>, (ABgq; ¢*)nq™ 1+ 1/B)(ABq, —ABq) oo ~= (1/B),(Aq)"
Z( 49%*)nq +(+/)( q q) Z(é_)()
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