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APPLICATION OF GROUP THEORY TO GENERATING

RELATIONS FOR SPECIAL FUNCTIONS.

B. C. CHANDRA, S. ALAM AND A. K. CHONGDAR

Abstract. In this article, we have suggested a unified group theoretic method

of obtaining a general class of generating relations involving various special
functions from the existence of their partial quasi-bilateral (or bilinear) gen-

erating relations from the group theoretic point of view. The detail discussion

of the method of obtaining generating function has been given in this paper
and finally we obtain a theorem in connection with the unification of a class

of generating relations involving some special functions. Furthermore, a good

number of theorems and results on generating functions involving various spe-
cial functions have been obtained in course of application of our main result

(Theorem-1) obtained in the present investigation.

1. Introduction

In [1], partial quasi-bilateral generating function is defined as follows:

G(x, z, w) =

∞∑
n=0

an p
(α)
n+r(x) q(n+r)m (z) wn,

where p
(α)
n+r(x) and q

(n+r)
m (z) are two special functions of orders (n+r), m and of

parameters α and (n+r).

In the present article, we have proved a general theorem in connection with the
unification of a class of generating relations for various special functions from the
existence of a partial quasi-bilateral generating function by using the concept of
one-parameter group of continuous transformations. We have obtained the follow-
ing theorem as the main result of our investigation.

Theorem-1: If

G(x, u, w) =

∞∑
n=0

an p
(α)
n+r(x) q(n+r)m (u) wn, (1.1)
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then

Ω
′

r(x, 1, 1) Ω
′′

r (u, 1)

{
h1(x, 1, 1)

}α
G

(
g1(x, 1, 1), g2(u, 1), wvh2(u, 1)k(x, 1, 1)

)

=

∞∑
n=0

∞∑
p=0

∞∑
q=0

an v
n wp+q+n

p! q!
C1,r C2,r p

(α−p)
n+r+p(x) qn+r+qm (u). (1.2)

Here, we would like to mention that in course of application of the result stated
in Theorem-1, we have obtained the extensions of the quasi-bilinear generating
functions involving Laguerre, Bessel, Gegenbauer and Jacobi polynomials. Fur-
thermore, these quasi-bilinear generating relations, obtained in Cor.2 - Cor.6 as
particular cases of Theorem-2 - Theorem-6, are the extensions of the corresponding
bilateral generating functions found derived in [2,3,4,5,6].

2. Group theoretic Discussion

We first consider the partial quasi-bilateral generating relation:

G(x, u, w) =

∞∑
n=0

an p
(α)
n+r(x) q(n+r)m (u) wn. (2.1)

Now replacing w by wztv in (2.1) and then multiplying both sides by yα, we get

yα G(x, u, wztv) =

∞∑
n=0

an

(
p
(α)
n+r(x) yαzn

) (
q(n+r)m (u) tn

) (
vw

)n
. (2.2)

At first we suppose that for the special functions p
(α)
n+r(x) and q

(n+r)
m (u), it is possible

to find the following linear partial differential operators each of which generates one
parameter group of continuous transformations:{

R1 = ξ1(x, y, z) ∂
∂x + ξ2(x, y, z) ∂∂y + ξ3(x, y, z) ∂∂z + ξ0(x, y, z)

R2 = η1(u, t) ∂
∂u + η2(u, t) ∂∂t + η0(u, t)

such that

R1

(
p
(α)
n+r(x) yαzn

)
= C

′

n, r p
(α−1)
n+r+1(x) yα−1zn+1 (2.3)

and

R2

(
q(n+r)m (u) tn

)
= C

′′

n, r q
(n+r+1)
m (u) tn+1. (2.4)

We now assume that the groups generated by R1 and R2 are

ewR1 f(x, y, z) = Ω
′

r(x, y, z) f

(
g1(x, y, z), h1(x, y, z), k(x, y, z)

)
(2.5)
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and

ewR2 f(u, t) = Ω
′′

r (u, t) f

(
g2(u, t), h2(u, t)

)
. (2.6)

Operating ewR1ewR2 on both sides of (2.2) we get,

ewR1ewR2

(
yα G(x, u, wztv)

)
= ewR1ewR2

∞∑
n=0

an

(
p
(α)
n+r(x) yαzn

) (
q(n+r)m (u) tn

) (
vw

)n
. (2.7)

The left hand side of (2.7), with the help of (2.5) & (2.6), reduces to

Ω
′

r(x, y, z) Ω
′′

r (u, t) {h1(x, y, z)}α G
(
g1(x, y, z), g2(u, t), wvh2(u, t)k(x, y, t)

)
.

(2.8)
The right hand side of (2.7), with the help of (2.3) & (2.4), becomes

∞∑
n=0

∞∑
p=0

∞∑
q=0

an v
n wp+q+n

p! q!
C
′

n, r C
′

n+1, r C
′

n+2, r .....C
′

n+p−1, r p
(α−p)
n+p+r y

(α−p)

× z(n+r) C
′′

n, r C
′′

n+1, r C
′′

n+2, r .....C
′′

n+q−1, r q
(n+q+r)
m (u) tn+q. (2.9)

Equating (2.8) & (2.9) and then putting y = z= t= 1, we get

Ω
′

r(x, 1, 1) Ω
′′

r (u, 1)

(
h1(x, 1, 1)

)α
G

(
g1(x, 1, 1), g2(u, 1), wvh2(u, 1)k(x, 1, 1)

)

=

∞∑
n=0

∞∑
p=0

∞∑
q=0

an v
n wp+q+n

p! q!
C1, r C2, r p

(α−p)
n+r+p(x) qn+r+qm (u),

where C1,r =
∏p−1
i=0 C

′

n+i, r and C2, r =
∏q−1
i=0 C

′′

n+i, r .

Hence we get the following theorem:

Theorem-1: If

G(x, u, w) =

∞∑
n=0

an p
(α)
n+r(x) q(n+r)m (u) wn,

then

Ω
′

r(x, 1, 1) Ω
′′

r (u, 1)

{
h1(x, 1, 1)

}α
G

(
g1(x, 1, 1), g2(u, 1), wvh2(u, 1)k(x, 1, 1)

)
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=

∞∑
n=0

∞∑
p=0

∞∑
q=0

an v
n wp+q+n

p! q!
C1,r C2,r p

(α−p)
n+r+p(x) qn+r+qm (u),

where C1, r =
∏p−1
i=0 C

′

n+i, r and C2, r =
∏q−1
i=0 C

′′

n+i, r, which does not seem to have
appeared in the earlier investigations.

Cor 1: If we put r=0 in theorem-1, we immediately get the result in connection
with the unification of quasi-bilateral generating relations involving various special
functions found derived in [7].

3. Applications

3.1. Laguerre Polynomial. At first we take

p
(α)
n+r(x) = L

(α)
n+r(x), q(n+r)m (u) = L(n+r)

m (u)

Then from [8,9], we get

R1 = xy−1z ∂
∂x + z ∂

∂y − xy
−1z R2 = t ∂∂u − t

C
′

n,r = (r + n+ 1) C
′′

n,r = (−1)

Ω
′

r(x, y, z) = exp(−wxy−1z) Ω
′′

r (u, t) = exp(−wt)
g1(x, y, z) = x(1 + wy−1z) g2(u, t) = u+ wt
h1(x, y, z) = y + wz h2(u, t) = t
k(x, y, z) = z

.

Therefore, by the application of our theorem, we get the following result involving
Laguerre polynomials.

Theorem-2: If

G(x, u, w) =

∞∑
n=0

an L
(α)
n+r(x) L(n+r)

m (u) wn,

then

exp

[
− w(1 + x)

] (
1 + w

)α
G

(
x(1 + w), u+ w, uw

)

=

∞∑
n=0

∞∑
p=0

∞∑
q=0

an v
n wp+q+n

p! q!
(r + n+ 1)p (−1)q L

(α−p)
n+r+p(x) L(n+r+q)

m (u),

which is found derived in [10].

Cor-2: If we put r=0, in the above theorem we get the result found derived in
[7,11].
Special Case-1: If, in the above theorem, we put m=0 we get a novel extension
of the bilateral generating function of Laguerre polynomials found derived in [12].
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3.2. Bessel Polynomials. We now take

p
(α)
n+r(x) = Y

(α)
n+r(x)

q
(n+r)
m (u) = Y

(n+r)
m (u)

Then from [13,14], we notice that

R1 = x2y−1z ∂
∂x + xz ∂

∂y + xy−1z2 ∂
∂z + (β + rx− x)y−1z

R2 = ut ∂∂u + t2 ∂∂t + (m+ r − 1)t

C
′

n,r = β C
′′

n,r = (m+ n+ r − 1)

Ω
′

r(x, y, z) = (1− wxy−1z)1−r exp(βwy−1z) Ω
′′

r (u, t) = (1− wt)1−m−r
g1(x, y, z) = x

(1−wxy−1z) g2(u, t) = u
(1−wt)

h1(x, y, z) = y
(1−wxy−1z) h2(u, t) = t

(1−wt)
k(x, y, z) = z

(1−wxy−1z)

Then, by the application of our theorem-1, we get the following result involving
generalized Bessel polynomials.

Theorem-3: If

G(x, u, w) =

∞∑
n=0

an Y
(α)
n+r(x) Y (n+r)

m (u) wn,

then

exp

(
βw

)(
1− w

)1−m−r(
1− wx

)1−α

G

(
x

1− wx
,

u

1− w
,

wv

(1− wx)(1− w)

)

=

∞∑
n=0

∞∑
p=0

∞∑
q=0

an v
n wp+q+n

p! q!
βp (m+ n+ r − 1)q Y

(α−p)
n+r+p(x) Y (n+r+q)

m (u) ,

which is found derived in [15].

Cor-3: If we put r=0 in the above theorem, we get the result found derived in [7]

Special Case-2: If, in the above theorem, we put m=0 we get the result found
derived in [12].

3.3. Gegenbauer polynomials. We now take

p
(α)
n+r(x) = C

(λ)
n+r(x)

q
(n+r)
m (u) = C

(n+r)
m (u)

then from [16,17]
R1 = (x2 − 1)y−1z ∂

∂x + 2xz ∂
∂y − xy

−1z R2 = ut ∂∂u + 2t2 ∂∂t + (m+ 2r)t

C
′

n,r = (n+r+2λ−1)(n+r+1)
2(λ−1) C

′′

n,r = 2(n+ r)

Ω
′

r(x, y, z) = {1 + 2wxy−1z + (x2 − 1)w2y−2z2}− 1
2 Ω

′′

r (u, t) = (1− 2wt)−
m
2 −r

g1(x, y, z) = x+ w(x2 − 1)y−1z g2(u, t) = u√
1−2wt

h1(x, y, z) = y{1 + 2wxy−1z + (x2 − 1)w2y−2z2} h2(u, t) = t√
1−2wt

k(x, y, z) = z
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Then by the application of our theorem, we get the following result involving Gegen-
bauer polynomials.

Theorem-4: If

G(x, u, w) =

∞∑
n=0

an C
(λ)
n+r(x) C(n+r)

m (u) wn,

then{
1+2wx+(x2−1)w2

}− 1
2+λ

(
1−2w

)−m
2 −r

G

(
x+w(x2−1),

u√
1− 2w

,
wv

1− zw

)

=

∞∑
n=0

∞∑
p=0

∞∑
q=0

an v
n w

p+q+n

p! q!

(−n− 2λ− r + 1)p (n+ r + 1)p
2p (1− λ)p

2q (n+r)q C
(λ−p)
n+r+p(x) Cn+r+qm (u),

which is found derived in [18].

Cor-4: If we put r=0 in the above theorem, we get the result on quasi-bilateral
generating relation found derived in [7].

Special Case-3: If, in the above corollary, we put m=0 we get the result found
derived in [4].

3.4. Jacobi Polynomials. Now we take

p
(α)
n+r(x) = P

(k1, α)
n+r (x)

q
(n+r)
m (u) = P

(k1, n+r)
m (u)

Then from [13,19] we get

R1 = (1− x2)y−1z ∂
∂x + (1− x)z ∂

∂y − (1 + x)y−1z2 ∂
∂z − (1 + k1 + r)(1 + x)y−1z

R2 = (1− u)t ∂∂u − t
2 ∂
∂t − (1 + n+ k1 +m+ r)t

C
′

n,r = −2(n+ r + 1) C
′′

n,r = −(1 + k1 + n+m+ r)

Ω
′

r(x, y, z) =

{
1 + w(1 + x)y−1z

}−1−k1−r
Ω
′′

r (u, t) = (1 + wt)−k1−m−r−1

g1(x, y, z) = x+w(1+x)y−1z
1+w(1+x)y−1z g2(u, t) = u+tw

1+tw

h1(x, y, z) = y(1+2wy−1z)
1+w(1+x)y−1z h2(u, t) = t

1+tw

k(x, y, z) = z
1+w(1+x)y−1z .

Therefore by the application of our theorem, we get the following result on partial
quasi-bilateral generating functions involving Jacobi polynomials.

Theorem-5: If

G(x, u, w) =

∞∑
n=0

an P
(k1, α)
n+r (x) P (k1, n+r)

m (u) wn,

then
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{
1 + w(1 + x)

}−1−k1−α−r (
1 + w

)−1−k1−m−r (
1 + 2w

)α
×G
(
x+ w(1 + x)

1 + w(1 + x)
,
u+ w

1 + w
,

wv

(1 + w){1 + w(1 + x)}

)

=

∞∑
n=0

∞∑
p=0

∞∑
q=0

an v
n w

p+q+n

p! q!
(−2)p (n+r+1)p (−1)q (1+k1+m+n+r)q P

(k1,α−p)
n+r+p (x) P (k1,n+r+q)

m (u),

which also does not seem to have appeared in the earlier works.

Cor-5: If we put r=0 in the above theorem, we get the result found derived in [7].

Special Case-4: If, in the above theorem, we put m=0, we get the result found
derived in [12].

If in place of R1, R2 we take the following two operators from [8,19]:

R
′

1 = (1− x2)y−1z ∂
∂x − (1− x)z ∂

∂y + (1− x)y−1z2 + (1 + β + r)(1− x)y−1z

R
′

2 = (1 + u)t ∂∂u + t2 ∂∂t + (1 +m+ β + r)t

Then we have,

C
′

n,r = −2(n+ r + 1) C
′′

n,r = (1 + β + n+m+ r)

Ω
′

r(x, y, z) =

{
1 + w(x− 1)y−1z

}−1−β−r
Ω
′′

r (u, t) = (1− wt)−(1+m+β+r)

g1(x, y, z) = x−w(x−1)y−1z
1+w(x−1)y−1z g2(u, t) = u+wt

1−wt

h1(x, y, z) = y(1−2wy−1z)
1+w(x−1)y−1z h2(u, t) = t

1−wt
k(x, y, z) = z

1+w(x−1)y−1z

Then by the application of our theorem, we get the following analogous result on
partial quasi-bilateral generating relation involving Jacobi polynomials:

Theorem-6: If

G(x, u, w) =

∞∑
n=0

an P
(α, β)
n+r (x) P (n+r, β)

m (u) wn

then {
1 + w(x− 1)

}−(1+β+r) (
1− w

)−(1+m+β+r) {
1− 2w

1 + w(x− 1)

}α
× G

(
x− w(x− 1)

1 + w(x− 1)
,
u+ w

1− w
,

wv

(1− w){1 + w(x− 1)}

)

=

∞∑
n=0

∞∑
p=0

∞∑
q=0

an v
n w

p+q+n

p! q!
(−2)p (n+r+1)p (1+β+m+n+r)q P

(α−p, β)
n+r+p (x) P (n+r+q, β)

m (u),

which is found derived in [20].
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Cor-6: If we put r=0 in the above theorem, we get the result found derived in [7].

Special Case-5: If, in the above theorem, we put m=0, we get the result found
derived in [12].

4. Conclusions:

From the above discussion, it is clear that one may apply theorem-1 in the case
of other polynomials and functions existing in the field of special functions to
obtain the partial quasi-bilinear (or bilateral) generating functions involving the
special function(s) under consideration subject to the condition of construction of
one parameter continuous transformations group for the said special function(s).
Furthermore, one may observe that the main result obtained in this paper is the
most general form of the extension of the quasi-bilateral generating function in-

volving p
(α)
n (x), q

(n)
m (u) from the existence of a partial quasi-bilateral (or quasi-

bilinear) generating function. This quasi-bilateral generating function involving

p
(α)
n (x), q

(n)
m (u) is nothing but an extension of the bilateral generating function

involving p
(α)
n (x). It may be pointed out that this extension is not unique because

of the fact that when q
(n)
m (u) is different from p

(n)
m (u), the extension of the bilateral

generating function is also different. In fact, when q
(n)
m (u) = p

(n)
m (u), the extension

of bilateral generating relation is quasi-bilinear. When q
(n)
m (u) is different from

p
(n)
m (u), the extension is quasi-bilateral.
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