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TWO-STEP ITERATION SCHEME FOR NONEXPANSIVE

MAPPINGS IN UNIFORMLY CONVEX BANACH SPACE

M.R. YADAV, B.S. THAKUR, A.K. SHARMA

Abstract. In this paper, we introduced a new type of two-step iterative pro-

cess to approximate the common fixed points of two nonexpansive mappings

in uniformly convex Banach spaces and established weak and strong conver-
gence results for common fixed points of nonexpansive mappings. The results

obtained in this paper are generalizations and improvement of recently proved

by another author.

1. Introduction :

Let K be a nonempty closed convex subset of a uniformly convex Banach space
E. Throughout this paper, N denotes the set of all positive integers and F (T ) 6= φ
i.e., F (T ) = {x ∈ K : Tx = x}. A mapping T : K → K is said to be nonexpansive
if

‖Tx− Ty‖ ≤ ‖x− y‖,

for all x, y ∈ K. We know that a point x ∈ K is a fixed point of T if Tx = x.

Several authors have been studied interative techniques for approximation fixed
points of nonexpansive mappings (see [9], [10], [2], [4] and [5]) by using the Mann
iteration method (see [11]) or the Ishikawa iteration method (see [8]).

The Picard and Mann [11] iteration schemes for a mapping T : K → K are
defined by {

x1 = x0 ∈ K,
xn+1 = Txn

(1.1)

and {
x1 = x0 ∈ K,
xn+1 = (1− αn)xn + αnTxn, n ∈ N, (1.2)

where {αn} is in (0, 1).
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Recently, Khan et al. ([6], [7]) modified the iteration process to the case of two
mappings as follows:  x1 = x0 ∈ K,

xn+1 = (1− αn)Txn + αnSyn,
yn = (1− βn)xn + βnTxn, n ∈ N

(1.3)

where {αn} and {βn} are sequence in (0, 1).

In this paper, we have introduced a new implicit iteration scheme given below
to compute the common fixed points for a pair of single valued mappings: x1 = x0 ∈ K,

xn+1 = (1− αn)Txn + αnSyn,
yn = (1− βn)Sxn + βnTxn, n ∈ N,

(1.4)

where {αn} and {βn} are sequences in [0, 1].
Observe that in (1.4), if we set S = I, βn = 0, then the scheme will reduce to

Mann iteration process [11]:{
x1 = x0 ∈ K,
xn+1 = (1− αn)Txn + αnxn, n ∈ N, (1.5)

where {αn} is a sequence in [0, 1].

2. Preliminaries

Let X = {x ∈ E : ‖x‖ = 1} and E∗ be the dual of E. The space E has :
(i) Gâteaux differentiable norm if

lim
t→0

‖x+ ty‖ − ‖x‖
t

,

exists for each x, y ∈ K;
(ii) Frèchet differentiable norm (see e.g. [12]) for each x in S, the above limit exists
and is attained uniformly for y in S and in this case, it is also well-known that

〈h, J(x)〉+
1

2
‖x‖2 ≤ 1

2
‖x+ h‖2 ≤ 〈h, J(x)〉+

1

2
‖x‖2 + b(‖h‖) (2.1)

for all x, h ∈ E, where J is the Frèchet derivative of the function 1
2‖.‖

2 at x ∈ E,
〈., .〉 is the dual pairing between E and E∗, and b is an increasing function defined

on [0,∞) such that limt→0
b(t)
t = 0;

(iii) Opial’s condition [13] if for any sequence {xn} in E, xn ⇀ x implies that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖,

for all y ∈ E with y 6= x.

Following are the definitions and lemma used to prove the results in the next
section.

Definition 2.1. A self-mapping T of a subset K of a normed linear space is said
to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖
holds for all x, y ∈ K.
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Definition 2.2. A self-mapping T of a subset K of a normed linear space is said
to be quasi-nonexpansive provided T has at least one fixed point in K, and if p ∈ K
is any fixed point of T , then

‖Tx− p‖ ≤ ‖x− p‖,

holds for all x ∈ K.

Definition 2.3. . Let E be a uniformly convex Banach space, K be a nonempty
closed convex subset of E, and T : K → K be a nonexpansive mapping. Then
I −T is said to be demi-closed at 0, if xn → x converges weakly and xn−Txn → 0
converges strongly, then it is implies that x ∈ K and Tx = x.

Definition 2.4. [1] . Suppose two mappings S, T : K → K, where K is a subset of
a normed space E, said to be satisfy condition (A′) if there exists a nondecreasing
function F : [0,∞) → [0,∞) with F (0) = 0, f(r) > 0 for all r ∈ (0,∞) such
that either ‖x − Sx‖ ≥ f(d(x, F )) or ‖x − Tx‖ ≥ f(d(x, F )) for all x ∈ K where
d(x, F ) = inf{‖x− p‖ : p ∈ F = F (S) ∩ F (T )}.

Lemma 2.5. [3]: Suppose that E be a uniformly convex Banach space and 0 <
p ≤ tn ≤ q < 1 for all n ∈ N. Let {xn} and {yn} be two sequences of E such that
limsupn→∞‖xn‖ ≤ r, limsupn→∞‖yn‖ ≤ r and limn→∞‖(1 − tn)xn + tnyn‖ = r
hold for some r ≥ 0. Then limn→∞ ‖xn − yn‖ = 0.

3. Convergence Results :

In this section, we have proved the approximate common fixed points of two
nonexpansive mapping for weak and strong convergence results, using a new type
of iteration process. In the consequence, F denotes the set of common fixed point
of the mapping S and T .

Lemma 3.1. : Let K be a nonempty convex subset of a uniformly convex Banach
space E. Suppose S, T : K → K be an nonexpansive mappings and {xn} be the
sequence as defined by (1.4), with restrictions

∑∞
n=1 αn < ∞, and

∑∞
n=1 βn < ∞.

If F (S) ∩ F (T ) 6= φ, and

‖x− Sy‖ ≤ ‖Tx− Sy‖, for all x, y ∈ K, (3.1)

then

lim
n→∞

‖Sxn − xn‖ = lim
n→∞

‖Txn − xn‖ = 0,

for all p ∈ F (S) ∩ F (T ).

Proof. Suppose p ∈ F (S)∩F (T ) and F (S)∩F (T ) 6= φ. Since S, T are nonexpansive
mappings, now using (1.4), we have

‖yn − p‖ = ‖(1− βn)Sxn + βnTxn − p‖
≤ (1− βn)‖Sxn − p‖+ βn‖Txn − p‖
≤ (1− βn)‖xn − p‖+ βn‖xn − p‖
≤ ‖xn − p‖, (3.2)
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and,

‖xn+1 − p‖ = ‖(1− αn)Txn + αnSyn − p‖
≤ (1− αn)‖Txn − p‖+ αn‖Syn − p‖
≤ (1− αn)‖xn − p‖+ αn‖yn − p‖
≤ (1− αn)‖xn − p‖+ αn‖xn − p‖
≤ ‖xn − p‖. (3.3)

Since {‖xn − p‖} is a non-increasing and bounded sequence, so limn→∞ ‖xn − p‖
exist. Let limn→∞ ‖xn − p‖ = c and suppose that c > 0,
we get

c = lim
n→∞

‖xn+1 − p‖

= lim
n→∞

‖(1− αn)Txn + αnSyn − p‖

= lim
n→∞

(1− αn)‖Txn − p‖+ αn‖Syn − p‖. (3.4)

Lemma 2.5 gives

lim
n→∞

‖Txn − Syn‖ = 0. (3.5)

Now, from (3.2) and (3.3) , we have

lim sup
n→∞

‖Syn − p‖ ≤ lim sup
n→∞

‖yn − p‖ ≤ lim sup
n→∞

‖xn − p‖, (3.6)

also

lim sup
n→∞

‖Txn − p‖ ≤ lim sup
n→∞

‖xn − p‖ = c. (3.7)

It follows from (3.1) and (3.5),

‖Txn − xn‖ = ‖Txn − Syn‖+ ‖Syn − xn‖
≤ ‖Txn − Syn‖+ ‖Txn − Syn‖
≤ 2‖Txn − Syn‖
→ 0 as n→∞. (3.8)

Taking limsup on both sides of the above inequality, we obtain

lim
n→∞

‖Txn − xn‖ = 0,

and hence

‖Syn − xn‖ ≤ ‖Syn − Txn‖+ ‖Txn − xn‖
→ 0 as n→∞. (3.9)

Using (3.8) and (3.9), we have

‖Sxn − xn‖ ≤ ‖Sxn − Syn‖+ ‖Syn − xn‖
≤ ‖yn − xn‖+ ‖Syn − xn‖
≤ (1− βn)‖Sxn − xn‖+ βn‖Txn − xn‖+ ‖Syn − xn‖

≤ 1

βn
(βn‖Txn − xn‖+ ‖Syn − xn‖),

which implies that
lim
n→∞

‖Sxn − xn‖ = 0.
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This completes the proof. �

Example 3.1 : Let E be the real line with the usual norm |.| and suppose
K = [0, 1]. Define S, T : K → K by

Tx =
2− x

2
and Sy =

4− y
5

for all x, y ∈ K. Obviously both S and T are nonexpansive with the common fixed
point 2

3 for all x, y ∈ K. Now we check that our condition ‖x− Sy‖ ≤ ‖Tx− Sx‖
for all x, y ∈ K is true. If x, y ∈ [0, 1], then

|x− Sy| = |x− (4− y)

5
| = |5x+ y − 4

5
|, and

|Tx− Sy| = |2− x
2
− 4− y

5
| = |2y − 5x+ 2

10
|.

Clearly, | 5x+y−4
5 | ≤ | 2y−5x+2

10 |, so that |x− Sy| ≤ |Tx− Sx| for all x, y ∈ K. Now,
we check that S and T are quasi-nonexpansive type mappings. In fact, if x ∈ [0, 1]
and p ∈ [0, 1], then

|Tx− p| = |2− x
2
− 0| = |2− x

2
| = |2− x

2
| ≤ |x| = |x− 0| = |x− p|,

that is

|Tx− p| ≤ |x− p|.
Similarly, we prove that

|Sx− p| ≤ |x− p|.
Therefore, S and T are quasi-nonexpansive type mappings.

Lemma 3.2. : Let K be a nonempty closed convex subset of a uniformly convex
Banach space E. Suppose {xn} be the sequence defined in Theorem (3.3) with
F 6= φ. Then, for any p1, p2 ∈ F , limn→∞〈xn, J(p1 − p2)〉 exist, in particular,
〈p− q, J(p1 − p2)〉 = 0 for all p, q ∈ ωω(xn).

Proof. Take x = p1 − p2, with p1 6= p2 and h = t(xn − p1) in the inequality (2.1)
to get:

1

2
‖p1 − p2‖2 + t〈xn − p1, J(p1 − p2)〉 ≤ 1

2
‖txn + (1− t)p1 − p2‖2

≤ 1

2
‖p1 − p2‖2 + t〈xn − p1, J(p1 − p2)〉+ b(t‖xn − p1‖).

As supn≥1‖xn − p1‖ ≤M ′ for some M ′ > 0, it follows that

1

2
‖p1 − p2‖2+t lim sup

n→∞
〈xn − p1, J(p1 − p2)〉

≤ 1

2
lim

n→∞
‖txn + (1− t)p1 − p2‖2

≤ 1

2
‖p1 − p2‖2 + b(tM ′) + t lim inf

n→∞
〈xn − p1, J(p1 − p2)〉.

That is,

lim sup
n→∞

〈xn − p1, J(p1 − p2)〉 ≤ lim inf
n→∞

〈xn − p1, J(p1 − p2)〉+
b(tM ′)

tM ′
M ′.
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If t → 0, then limn→∞〈xn − p1, J(p1 − p2)〉 exists for all p1, p2 ∈ F , in particular,
we get

〈p− 1, J(p1 − p2)〉 = 0

for all p, q ∈ ωω(xn). �

Theorem 3.3. Let E be a uniformly convex Banach space satisfying Opial condi-
tion and K,T, S and {xn} be taken as Lemma 3.1. If F (S) ∩ F (T ) 6= φ, I − T
and I − S are demiclosded at zero, then {xn} converges weakly to a common fixed
point of S and T .

Proof. Let p ∈ F (S) ∩ F (T ), then as proved in Lemma 3.1 limn→∞ ‖xn − p‖
exist. Since E is uniformly convex Banach space. Thus there exists subsequences
{xnk

} ⊂ {xn} such that {xnk
} converges weakly to z1 ∈ K. From Lemma 3.1, we

have

lim
n→∞

‖Txnk
− xnk

‖ = 0,

and

lim
n→∞

‖Sxnk
− xnk

‖ = 0.

Since I − T and I − S are demiclosed at zero, therefore Sz1 = z1. Similarly
Tz1 = z1. Finally, we prove that {xn} converges weakly to z1. Let on contrary
that there exists a subsequence {xni

} ⊂ {xn} and {xnj
} ⊂ {xn} such that {xnj

}
converges weakly to z2 ∈ K and z1 6= z2. Again in the same way, we can prove
that z2 ∈ F (S) ∩ F (T ). From Lemma 3.1 the limits limn→∞ ‖xn − z1‖ and
limn→∞ ‖xn − z2‖ exists. Suppose that z1 6= z2, then by the Opial’s condition, we
get

lim
n→∞

‖xn − z1‖ = lim
ni→∞

‖xni − z1‖ < lim
ni→∞

‖xni − z2‖

= lim
n→∞

‖xn − z2‖ = lim
nj→∞

‖xnj − z2‖

< lim
nj→∞

‖xnj
− z1‖ = lim

n→∞
‖xn − z1‖.

This is a contradiction so z1 = z2. Hence {xn} converges weakly to a common fixed
point of T and S. �

Theorem 3.4. Let E be a real uniformly convex Banach space and K,S, T, F, {xn}
be as in Lemma 3.1. Then {xn} converges strongly to a point of F if and only if

lim inf
n→∞

d(xn, F ) = 0.

Proof. Necessity is evident, let lim infn→∞d(xn, F ) = 0. From Lemma 3.1,
limn→∞ ‖xn − p‖ exists for all p ∈ F , so that limn→∞ d(xn, F ) exists. Since by
hypothesis, lim infn→∞d(xn, F ) = 0, so that, we get

lim
n→∞

d(xn, F ) = 0.

But {xn} is Cauchy sequence and therefore converges to p. We know that limn→∞ d(xn, F ) =
0, we obtained d(p, F ) = 0, therefore p ∈ F .

�

Using Theorem 3.4, we obtain a strong convergence theorem of the iteration
scheme (1.4) under the condition (A′) as below:
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Theorem 3.5. Let E be a uniformly convex Banach space and K,S, T, , F, {xn} be
as in Lemma 3.1. Let S, T satisfy the condition (A′) and F 6= φ. Then {xn}
converges strongly to a point of F .

Proof. We proved in Lemma 3.1, i.e.

lim
n→∞

‖Sxn − xn‖ = 0 = lim
n→∞

‖Txn − xn‖

Then from the definition of condition (A′), we obtain

lim
n→∞

f(d(xn, F )) ≤ lim
n→∞

‖Txn − xn‖ = 0

or
lim
n→∞

f(d(xn, F )) ≤ lim
n→∞

‖Sxn − xn‖ = 0.

In above cases, we get
lim
n→∞

f(d(xn, F )) = 0.

But f : [0,∞) → [0,∞) is a nondecreasing function satisfying f(0) = 0, f(r) > 0
for all r ∈ (0,∞), so that we get

lim
n→∞

d(xn, F ) = 0.

�

All the conditions of Theorem 3.4 are satisfied, therefore by its conclusion {xn}
converges to strongly to a fixed point of F .

The following results are immediate sequel of our strong convergence theorem.

Corollary 3.6. . Let K be a nonempty closed convex subset of a uniformly convex
Banach space E. Suppose T be a nonexpansive mapping of K. Let {xn} be defined
by the iteration (1.4), where {αn} and {βn} in [0, 1] for all n ∈ N, then {xn}
converges strongly to a fixed point of T .

Proof. Suppose S = T in the above theorem.

Corollary 3.7. . Let K be a nonempty closed convex subset of a uniformly convex
Banach space E. Suppose T be a nonexpansive mapping of K. Let {xn} be defined
by the iteration (1.2), where {αn} in [0, 1] for all n ∈ N, then {xn} converges
strongly to a fixed point of T .

Proof. Suppose S = I in the above theorem.
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