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ON FINITE STRICT CO-SINGULARITY OF VOLTERRA

OPERATORS ON NON-REFLEXIVE SPACE

MOHD SHAHBAZ, TAQSEER KHAN

Abstract. Finite strict co-singularity of Volterra operators Va : L1[0, 1+a]→
C[0, 1], where 0 ≤ a <∞, defined by (Vaf)(x) =

∫ (1+a)x
0 f(t)dt, x ∈ [0, 1], t ∈

[0, 1 + a] is explored by calculating Mityagin numbers. Also, Approximation,

Gelfand, Kolmogorov, Bernstein, and Isomorphism s-numbers are obtained for

these operators.

1. Background and Main Results

Compactness of operators is one of the most studied properties. But not all
operators are compact. Due to the significance in various branches of Mathematics,
compact operators have been extensively studied (see [4, 5, 6, 11, 14, 15]). In
most cases, the use of s-numbers is in measuring the degree of compactness of
operators but not always. For example, the Bernstein numbers (defined in Section
2) are used to study the finite strict singularity (definition given in Section 2)
which is a weaker property than compactness (see [3]). There is another weaker
property than compactness called strict co-singularity (defined in Section 2) which
is associated with the strict singularity of the operator’s dual. Mityagin numbers
is one of the best ways to explore its finite strict co-singularity (defined in Section
2) of operators. Properties of some non-compact operators which are not far away
from being compact have also been explored. One such operator is the Volterra
operator defined by

(V f)(t) =

∫ t

0

f(s)ds, (0 ≤ t ≤ 1) for f ∈ L1(0, 1) (1.1)

between the spaces L1 and C[0, 1]. This operator is not compact but possesses a
desired property called strict singularity (defined in Section 2) (see [2, 10]). For
this operator, Bakşi et. al. obtained exact values of Approximation, Gelfand,
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Kolmogorov and Isomorphism numbers in [1]. In present work we introduce a gen-
eralization of the Volterra operator defined in (1.1) by extending the domain of
definition to [0, 1 + a], where a ≥ 0, and estimate the values of the Approximation,
Gelfand, Kolmogorov, Bernstein, Mityagin, Isomorphism s-numbers for the gener-
alized operator.
It can be easily seen that operator Va is not compact. Take a sequence of functions
{fn}∞n=1 in L1[0, 1 + a], where fn(t) = n+1

(1+a)n+1 t
n for t ∈ [0, 1 + a]. Then image of

this sequence under Va is {xn+1}∞n=1 having no weakly convergent subsequence in
C[0, 1].
In the following we state the main results.

Theorem 1.1. For the Volterra operator Va : L1[0, 1 + a]→ C[0, 1], the following
are obtained

an(Va) = cn(Va) = dn(Va) =
1

2
for n ≥ 2. (1.2)

Theorem 1.2. For the Volterra operator Va : L1[0, 1 + a]→ C[0, 1], the following
are obtained

bn(Va) = mn(Va) = in(Va) =
1

2n− 1
for n ∈ N. (1.3)

The structure of rest of the paper is as follows. Section 2 contains notations and
definitions of rudiments. In Section 3, the norm of the operator Va is calculated and
auxiliary results are proved. The proofs of main results are presented in Section 4.

2. Elementary Material

2.1. Normed Spaces. Let X, Y be two Banach spaces. By BX , SX we denote
respectively the closed unit ball and the unit sphere of X. The set of all bounded
linear operators from X to Y is denoted by B(X,Y ). For T ∈ B(X,Y ), the operator
norm of T will be denoted by ‖T‖op. We write dimX for the dimension of the space
X. For a closed subspace M of X, the quotient space is defined by

X/M = {t+M : t ∈ X}
with the quotient norm

‖[t]‖X/M = inf
m∈M

‖t−m‖X ,

where [t] denotes the element of X/M given by [t] = t + M = {t + m : m ∈ M}.
For brevity, we write ‖t‖X/M instead of writing ‖[t]‖X/M .

L1[0, 1 + a] defines the Lebesgue space of all Lebesgue integrable functions on
[0, 1 + a] taking values in R and identified almost everywhere. The norm of f ∈
L1[0, 1 + a] is defined by

‖f‖L1 =

∫ 1+a

0

|f(u)| du, u ∈ [0, 1 + a].

C[0, 1] will denote the space of real valued continuous functions on [0, 1] under
the norm

‖f‖∞ = sup
0≤x≤1

|f(x)| .

A Banach space X is said to have lifting property if for any closed subspace N

of an arbitrary Banach space Y , every operator T : X → Y/N admits a lifting T̂

such that ‖T̂‖ ≤ (1 + ε) ‖T‖ for every ε > 0. The space L1 has lifting property, for
instance, see [15, p. 36]. For short, the space L1[0, 1 +a] will be written as L1 only.
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2.2. Definitions.

Definition 2.1. An operator T acting between Banach spaces X and Y , is said
to be finitely strictly singular if for every ε > 0 there correspond Nε ∈ N such
that for every subspace M ⊆ X with dimM ≥ Nε, there exists u in SM such that
‖T (u)‖ ≤ ε.

Definition 2.2. Let T be an operator acting between Banach spaces X and Y and
M be an arbitrary infinite co-dimensional closed subspace of Y. We say that T is
strictly co-singular, if for every such M, the map νT, where ν : Y → Y/M, is a
quotient map having non-closed range.

Definition 2.3. An operator T acting between Banach spaces X and Y , is said to
be finitely strictly cosingular if the sequence of its Mityagin numbers tends to zero
[7].

Definition 2.4. For Banach spaces X and Y and an operator T ∈ B(X,Y ), we
associate a sequence sn(T ) of scalars satisfying the following properties:

(S1) Monotonicity: ‖T‖ = s1(T ) ≥ s2(T ) ≥ s3(T ) ≥ ... ≥ 0,
(S2) sn(T + S) ≤ sn(T ) + ‖S‖ for every S ∈ B(X,Y ),
(S3) Ideal Property: sn(B◦T◦A) ≤ ‖B‖sn(T )‖A‖ for every A ∈ B(Z1, X) and B ∈

B(Y,Z2),
(S4) Norming Property: sn(Id : `2n → `2n) = 1,
(S5) Rank Property: sn(T ) = 0 whenever rank T < n.

Then sn(T ) is called the n-th s-number of T . The number sn(T ) is called the n-th
strict s-number of T when the following condition

(S6) sn(Id : E → E) = 1 for every Banach space E of dimE = n,

is considered in place of (S4).

The s-numbers have varied definitions in literature. Initially, A. Pietsch for-
mulated the definition of s-numbers (see [12]) which makes use of condition (S6).
Later, the definition was modified so that a larger class of s-numbers (such as
Chang, Hilbert, Weyl numbers etc.) can be covered. A detailed study of s-numbers
can be found in [12, 13] or [8].

For T ∈ B(X,Y ) and n ∈ N, we define the n-th Approximation, Gelfand, Kol-
mogorov, Bernstein, Mityagin and Isomorphism numbers by

an(T ) = inf
F∈B(X,Y )
rankF<n

‖T − F‖,

cn(T ) = inf
M⊆X

codimM<n

sup
x∈BM

‖Tx‖Y ,

dn(T ) = inf
N⊆Y

dimN<n

sup
x∈BX

‖Tx‖Y/N ,

bn(T ) = sup
M⊆X

dimM≥n

inf
x∈SM

‖Tx‖Y ,

mn(T ) = sup
N⊆Y

codimN≥n

sup{α ≥ 0 : αBY/N ⊆ (πN ◦ T )BX},
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where πN : Y → Y/N is a canonical surjection of closed subspace N of Y .

in(T ) = sup
dim(E)≥n

‖P‖−1‖Q‖−1,

respectively, where E is Banach space and P ∈ B(Y,E), Q ∈ B(E,X) such that
P ◦ T ◦Q defines identity map on E. The above s-numbers are connected through
some inequalities, which are bounded below by Isomorphism numbers and bounded
above by Approximation numbers. To be concrete, for T ∈ B(X,Y ) and n ∈ N,
the following relation is obtained

in(T ) ≤ bn(T ) ≤ min{cn(T ), dn(T )} ≤ max{cn(T ), dn(T )} ≤ an(T ).

In addition, if the space X possesses lifting property, then Approximation numbers
coincide with Kolmogorov numbers, for every n ∈ N, see ([8, 13]).

3. Auxiliary Results

Proposition 3.1. The norm of the operator Va is 1. i.e. ‖Va‖op = 1.

Proof. For any f ∈ L1, we have

‖Vaf‖∞ = sup
0≤x≤1

|(Vaf)(x)| = sup
0≤x≤1

∣∣∣∣∣
∫ (1+a)x

0

f(t)dt

∣∣∣∣∣ ≤ sup
0≤x≤1

∫ (1+a)x

0

|f(t)|dt.

≤
∫ 1+a

0

|f(t)|dt = ‖f‖L1 ,

and from where we obtain ‖Vaf‖∞ ≤ 1 for f ∈ BL1 .
For the equality, consider the function f = 1

1+aχ[0,1+a] ∈ L1. Then we have

‖f‖L1 = 1 and ‖Vaf‖∞

= sup
0≤x≤1

|(Vaf)(x)| = sup
0≤x≤1

∣∣∣∣∣
∫ (1+a)x

0

f(t)dt

∣∣∣∣∣ = sup
0≤x≤1

∣∣∣∣∣
∫ (1+a)x

0

1

1 + a
χ[0,1+a](t)dt

∣∣∣∣∣
= sup

0≤x≤1

1

1 + a

∣∣∣∣∣
∫ (1+a)x

0

χ[0,1+a](t)dt

∣∣∣∣∣ = sup
0≤x≤1

∣∣∣∣ (1 + a)x

1 + a

∣∣∣∣ = 1, since a ≥ 0.

Thus, the operator norm is

‖Va‖op = sup
‖f‖L1≤1

‖Vaf‖∞ = 1.

�

Lemma 3.2. For n ≥ 2, the following estimation for Kolmogorov numbers is
obtained

dn
(
Va : L1 → C[0, 1]

)
≤ 1

2
.

Proof. In view of monotonicity property of s-numbers, it is sufficient to prove that
d2(Va) ≤ 1

2 . For a closed subspace N of C[0, 1], we have

d2(Va) = inf
N⊆C[0,1]
dimN<2

sup
f∈BL1

‖Vaf‖C[0,1]/N ≤ sup
f∈BL1

‖Vaf‖C[0,1]/R

= sup
f∈BL1

inf
k∈R
‖Vaf − k‖∞.
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For every ε > 0 there is an f ∈ BL1 such that

d2(Va)− ε ≤ inf
k∈R
‖Vaf − k‖∞

d2(Va)− ε ≤ inf
k∈R

sup
0≤x≤1

|(Vaf − k)(x)| ≤ sup
0≤x≤1

|(Vaf − k)(x)| .

On considering k =
1

2

∫ 1+a

0

f(t)dt, the following is obtained

d2(Va)− ε ≤ sup
0≤x≤1

∣∣∣∣∣
∫ (1+a)x

0

f(t)dt− 1

2

∫ 1+a

0

f(t)dt

∣∣∣∣∣
= sup

0≤x≤1

∣∣∣∣∣
∫ (1+a)x

0

f(t)dt− 1

2

∫ (1+a)x

0

f(t)dt− 1

2

∫ 1+a

(1+a)x

f(t)dt

∣∣∣∣∣
= sup

0≤x≤1

∣∣∣∣∣12
∫ (1+a)x

0

f(t)dt− 1

2

∫ 1+a

(1+a)x

f(t)dt

∣∣∣∣∣
=

1

2
sup

0≤x≤1

∣∣∣∣∣
∫ (1+a)x

0

f(t)dt−
∫ 1+a

(1+a)x

f(t)dt

∣∣∣∣∣
≤ 1

2
sup

0≤x≤1

[∣∣∣∣∣
∫ (1+a)x

0

f(t)dt

∣∣∣∣∣+

∣∣∣∣∣
∫ 1+a

(1+a)x

f(t)dt

∣∣∣∣∣
]

≤ 1

2
sup

0≤x≤1

[ ∫ (1+a)x

0

|f(t)|dt+

∫ 1+a

(1+a)x

|f(t)|dt
]

=
1

2

∫ (1+a)

0

|f(t)|dt =
1

2
‖f‖L1 ≤ 1

2
.

Since ε > 0 is arbitrary, therefore we get d2(Va) ≤ 1
2 and hence dn(Va) ≤ 1

2 for all n ∈
N \ {1} . �

Lemma 3.3. For n ≥ 2, the Gelfand numbers of Va are estimated as

cn
(
Va : L1 → C[0, 1]

)
≥ 1

2
.

Proof. By definition of Gelfand numbers, corresponding to each ε > 0, one can
have a subspace M ⊆ L1 with codimension M < n such that

cn(Va) + ε ≥ sup
f∈BM

‖Vaf‖∞. (3.1)

To prove the lemma, we define functions fj = 2j+1

1+a χIj , where Ij =
(
1+a
2j+1 ,

1+a
2j

)
.

Then for j ∈ N,

‖fj‖L1 =

∫ 1+a

0

|fj(t)|dt =

∫ 1+a

0

∣∣∣∣ 2j+1

1 + a
χIj

∣∣∣∣ dt =
2j+1

1 + a

∫ 1+a

0

|χIj |dt

=
2j+1

1 + a

[∫ 1+a

2j+1

0

|χIj |dt+

∫ 1+a

2j

1+a

2j+1

|χIj |dt+

∫ 1+a

1+a

2j

|χIj |dt

]

=
2j+1

1 + a

[
1 + a

2j
− 1 + a

2j+1

]
= 1,
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and for distinct j and k, ‖fj − fk‖L1

=

∫ 1+a

0

|(fj − fk)(t)|dt =

∫ 1+a

0

∣∣∣∣( 2j+1

1 + a
χIj −

2k+1

1 + a
χIk

)
(t)

∣∣∣∣ dt
=

1

1 + a

∫ 1+a

0

∣∣(2j+1χIj − 2k+1χIk
)

(t)
∣∣ dt

=
1

1 + a

[∫ 1+a

2k+1

0

∣∣(2j+1χIj − 2k+1χIk
)

(t)
∣∣ dt+

∫ 1+a

2k

1+a

2k+1

∣∣(2j+1χIj − 2k+1χIk
)

(t)
∣∣ dt

+

∫ 1+a

2j+1

1+a

2k

∣∣(2j+1χIj − 2k+1χIk
)

(t)
∣∣ dt+

∫ 1+a

2j

1+a

2j+1

|
(
2j+1χIj − 2k+1χIk

)
(t)|dt

+

∫ 1+a

1+a

2j

∣∣(2j+1χIj − 2k+1χIk
)

(t)
∣∣ dt] (for j < k)

=
1

1 + a

[∣∣−2k+1
∣∣ (1 + a

2k
− 1 + a

2k+1

)
+
∣∣2j+1

∣∣ (1 + a

2j
− 1 + a

2j+1

)]
= 2,

and

‖Vafj − Vafk‖∞ = sup
0≤x≤1

|(Vafj − Vafk)(x)| = sup
0≤x≤1

|Vafj(x)− Vafk(x)|

= sup
0≤x≤1

∣∣∣∣∣
∫ (1+a)x

0

fj(t)dt−
∫ (1+a)x

0

fk(t)dt

∣∣∣∣∣
= sup

0≤x≤1

∣∣∣∣∣
∫ (1+a)x

0

2j+1

1 + a
χIj (t)dt−

∫ (1+a)x

0

2k+1

1 + a
χIk(t)dt

∣∣∣∣∣
=

1

1 + a
sup

0≤x≤1

∣∣∣∣∣
∫ (1+a)x

0

2j+1χIj (t)dt−
∫ (1+a)x

0

2k+1χIk(t)dt

∣∣∣∣∣ .
If we assume j > k, then either (1 + a)x ∈ Ij or (1 + a)x ∈ Ik. Therefore, we have

‖Vafj − Vafk‖∞ = 1.

Now adopting the procedure as in [1, Lemma 3.2], we obtain cn(Va) ≥ 1
2 for all

n ≥ 2. �

Lemma 3.4. For n ∈ N, bn
(
Va : L1 → C[0, 1]

)
≤ 1

2n−1 .

Proof. By definition of n-th Bernstein numbers, for every ε1 > 0 there is a closed
subspace M of L1 with dimM ≥ n such that

bn(Va)− ε1 ≤ inf
f∈SM

‖Vaf‖∞.

For g ∈M , let f = g
‖g‖L1

. Then f ∈ SM and we have

‖Vag‖∞ ≥ ‖g‖L1

(
bn(Va)− ε1

)
. (3.2)

Let M be an n-dimensional subspace of L1. Then by linearity and injectivity of
Va, Va(M) is an n-dimensional subspace of C[0, 1]. By [9, Proposition 1.4], for
any ε2 > 0 there exists g ∈ M such that ‖Va(g)‖∞ ≤ 1 + ε2, and an n-tuple of
points t1 < t2 < ... < tn in [0, 1] such that Va(g)(tk) = (−1)k, 1 ≤ k ≤ n. We



FINITE STRICT CO-SINGULARITY OF VOLTERRA OPERATORS 7

define a function η : [0, 1] → [0, 1 + a] by η(x) = (1 + a)x. Then clearly η is
a homeomorphism and corresponding to each point tk ∈ ]0, 1[, we have η(tk) ∈
]0, 1 + a[ and 0 < η(t1) < η(t2) < ... < η(tn) < 1 + a. For the calculation of bn(Va),
we calculate the norm of g ∈M as ‖g‖L1

=

∫ 1+a

0

|g(t)| dt

=

∫ η(t1)

0

|g(t)| dt+

∫ η(t2)

η(t1)

|g(t)| dt+ ...+

∫ η(tn)

η(tn−1)

|g(t)| dt

+

∫ 1+a

η(tn)

|g(t)| dt

≥

∣∣∣∣∣
∫ η(t1)

0

g(t)dt

∣∣∣∣∣+

∣∣∣∣∣
∫ η(t2)

η(t1)

g(t)dt

∣∣∣∣∣+ ...+

∣∣∣∣∣
∫ η(tn)

η(tn−1)

g(t)dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ 1+a

η(tn)

g(t)dt

∣∣∣∣∣
≥

∣∣∣∣∣
∫ η(t1)

0

g(t)dt

∣∣∣∣∣+

∣∣∣∣∣
∫ η(t2)

η(t1)

g(t)dt

∣∣∣∣∣+ ...+

∣∣∣∣∣
∫ η(tn)

η(tn−1)

g(t)dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ η(t1)

0

g(t)dt

∣∣∣∣∣+

n−1∑
k=1

∣∣∣∣∣
∫ η(tk+1)

η(tk)

g(t)dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ η(t1)

0

g(t)dt

∣∣∣∣∣+

n−1∑
k=1

∣∣∣∣∣
∫ η(tk+1)

0

g(t)dt−
∫ η(tk)

0

g(t)dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ (1+a)t1

0

g(t)dt

∣∣∣∣∣+

n−1∑
k=1

∣∣∣∣∣
∫ (1+a)tk+1

0

g(t)dt−
∫ (1+a)tk

0

g(t)dt

∣∣∣∣∣
= |Va(g)(t1)|+

n−1∑
k=1

|Va(g)(tk+1)− Va(g)(tk)|

= |(−1)|+
n−1∑
k=1

∣∣(−1)k+1 − (−1)k
∣∣ = 1 + 2(n− 1).

Therefore, we obtain

‖g‖L1 ≥ 2n− 1.

Now by (3.2), for every g ∈M, we have

1 + ε2 ≥ ‖Vag‖∞ ≥ (bn(Va)− ε1)‖g‖L1 ≥ (bn(Va)− ε1)(2n− 1),

which implies that
1 + ε2
2n− 1

≥ bn(Va)− ε1,

and, hence, by arbitrariness of ε1 and ε2, we get

bn(Va) ≤ 1

2n− 1
.

�
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Lemma 3.5. For n ∈ N and 0 ≤ a <∞, mn
(
Va : L1[0, 1 + a]→ C[0, 1]

)
≤ 1

2n−1 .

Proof. By ([12, page 210]), we have

mn(T ) = sup
N⊂Y

codimN=n

sup{α ≥ 0 : αBY/N ⊂ (πN ◦ T )BX}.

Therefore, for every ε > 0, there exists a subspace N of C with codimension n such
that

mn(Va)− ε ≤ sup{α ≥ 0 : αBC/N ⊂ (πN ◦ Va)BL1}. (3.3)

One can observe that Va(BL1) 6⊂ N , because if Va(f) ∈ N for all f ∈ BL1 , then
(πN ◦Va)BL1 6⊃ αBC/N for any α ≥ 0. It insures that there exists some f ∈ L1 such
that Vaf 6∈ N, we denote such functions by fN . Now there exists a subspace Z of
C[0, 1] with dimZ = n such that C[0, 1] = N⊕Z.We write VafN = 0+z for fN ∈ L1

and z ∈ Z. By linearity and injectivity of Va, Va|−1Z exists. Consider the subspace
V −1a Z = {f ∈ L1 : Vaf 6∈ N \ {0}} of L1. Then dimV −1a Z = n. Then for all such
α ≥ 0 as in (3.3) and for all f ∈ SV −1

a Z , there exists an h ∈ (α+δ)SC/N ∩πNVaBL1

with δ ≥ 0 such that ‖h‖C/N = α+ δ and h = Vaf +N for some f ∈ Va|−1Z . Then
we have ‖Vaf +N‖C/N = α+ δ, from where it follows that ‖Vaf +N‖C/N ≥ α for
all f ∈ SV −1

a Z . Then one obtains

‖Vaf‖∞ ≥ ‖Vaf +N‖C/N ≥ α for all f ∈ SV −1
a Z .

This gives
‖Vaf‖∞ ≥ α‖f‖L1 for all f ∈ V −1a Z.

Then by adopting the procedure of the proof of Lemma 3.4, we obtain

α ≤ 1

2n− 1
,

which by artbitrariness of ε, yields mn(Va) ≤ 1
2n−1 for all n ∈ N. This proves the

lemma. �

Lemma 3.6. For n ∈ N, in
(
Va : L1 → C[0, 1]

)
≥ 1

2n−1 .

Proof. Consider the Banach space l1w,n, which is n-dimensional weighted subspace

of sequence space l1. For x = {xk}nk=1 ∈ l1w,n, the norm is defined by

‖{xk}‖nk=1l1w,n
=

n∑
k=1

wk |xk| ,

where wk = 2 for 1 ≤ k ≤ n − 1, and wn = 1. For computing the isomorphism
numbers, we construct maps P : C[0, 1] → l1w,n and Q : l1w,n → L1 such that the
tower

`1w,n
Q−→ L1[0, 1 + a]

Va−→ C[0, 1]
P−→ `1w,n

reduces to the identity map on l1w,n. We define the map P : C[0, 1]→ l1w,n by

(Pf)k =
2n− 1

1 + a
f

(
2k − 1

2n− 1

)
for 1 ≤ k ≤ n,

and towards the construction of the map Q we divide the unit interval [0, 1] into

2n − 1 sub-intervals denoted by ξ1, ξ2, ..., ξ2n−1, where ξk =
[
k−1
2n−1 ,

k
2n−1

]
for 1 ≤

k ≤ 2n − 1. Now by the map η defined in proof of Lemma 3.4, corresponding to
each sub-interval ξk, we have sub-interval Ik of the interval [0, 1 + a] defined by
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Ik =
[
k−1
2n−1 (1 + a), k

2n−1 (1 + a)
]

for 1 ≤ k ≤ 2n− 1. Hence, corresponding to every

partition of [0, 1] we obtain a unique partition of [0, 1 + a], such that η(x) ∈ Ik
whenever x ∈ ξk. The map Q : l1w,n → L1 is defined by

Q
(
{xk}nk=1

)
=

n−1∑
k=1

xk
(
χI2k−1

− χI2k
)

+ xnχI2n−1
.

One observes that

(
(Va ◦Q){xk}nk=1

)
(x) =

(
Va
(
Q({xk}nk=1)

))
(x)

=

∫ (1+a)x

0

(
Q{xk}nk=1

)
(t)dt

=

{
xk
(
x− 2k−2

2n−1 (1 + a)
)

for x ∈ ξ2k−1
−xk

(
x− 2k

2n−1 (1 + a)
)

for x ∈ ξ2k.

Therefore for x ∈ ξ2k−1, we have

(P (Va(B = Q{xk}nk=1))(x))k = xk
2n− 1

1 + a

(
2k − 1

2n− 1
(1 + a)− 2k − 2

2n− 1
(1 + a)

)
= xk,

and for x ∈ ξ2k, one obtains

(P (Va(Q{xk}nk=1))(x))k = −xk
2n− 1

1 + a

(
2k

2n− 1
(1 + a)− 2k

2n− 1
(1 + a)

)
= xk,

proving that P ◦ Va ◦ Q = Il1w,n
. It is easily seen the maps P and Q are bounded

operators. Their norms are computed as under.

‖Q‖op = sup
‖{xk}‖nk=1=1

‖Q ({xk}nk=1)‖L1 , (3.4)

where

‖Q ({xk}nk=1) ‖L1 =

∫ 1+a

0

|(Q{xk}nk=1) (t)| dt

and by definition of Q, we have

(Q{xk}nk=1) (t) =

{
xk for t ∈ I2k−1, 1 ≤ k ≤ n,
−xk for t ∈ I2k, 1 ≤ k ≤ n− 1.
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Therefore, ‖Q ({xk}nk=1)‖L1

=

∫ 1+a

0

|(Q{xk}nk=1) (t)| dt

=

∫ (1+a)(2n−1)−1

0

|(Q{xk}nk=1) (t)| dt

+

∫ 2(1+a)(2n−1)−1

(1+a)(2n−1)−1

|(Q{xk}nk=1) (t)| dt

+ ...+

∫ k(1+a)(2n−1)−1

(k−1)(1+a)(2n−1)−1

|(Q{xk}nk=1) (t)| dt+ ...

+

∫ 1+a

(2n−2)(1+a)(2n−1)−1

|(Q{xk}nk=1) (t)| dt

= |x1| |I1|+ |−x1| |I2|+ ...+ |xn| |I2n−1|,

where the length of interval Ik, 1 ≤ k ≤ 2n− 1, is |Ik| = 1+a
2n−1 and then we have

‖Q ({xk}nk=1)‖L1 =
1 + a

2n− 1

[
n−1∑
k=1

2|xk|+ xn

]
=

1 + a

2n− 1

[
n−1∑
k=1

wk|xk|

]

=
1 + a

2n− 1
‖{xk}nk=1‖l1w,n

.

Therefore, by (3.4), we obtain ‖Q‖op = 1+a
2n−1 .

Next,

‖P‖op = sup
‖f‖∞≤1

‖{(Pf)k}
n
k=1‖l1w,n

= sup
‖f‖∞≤1

n∑
k=1

wk |(Pf)k|

= sup
‖f‖∞≤1

n∑
k=1

wk

∣∣∣∣2n− 1

1 + a
f

(
2k − 1

2n− 1

)∣∣∣∣
= sup
‖f‖∞≤1

∣∣∣∣2n− 1

1 + a

∣∣∣∣ n∑
k=1

wk

∣∣∣∣f (2k − 1

2n− 1

)∣∣∣∣ . (3.5)

Now, for f ∈ C[0, 1] with ‖f‖∞ ≤ 1, we have |f(x)| ≤ ‖f‖∞‖x‖ ≤ 1. On using this
into (3.5), one gets

‖P‖op ≤
∣∣∣∣2n− 1

1 + a

∣∣∣∣ n∑
k=1

wk ≤
∣∣∣∣2n− 1

1 + a

∣∣∣∣ (2(n− 1) + 1) ≤ (2n− 1)2

1 + a
.

Let’s take the function f ∈ C[0, 1], where f(x) = 1. Then obviuosly ‖f‖∞ = 1 and

‖Pf‖l1w,n
= ‖{(Pf)k}

n
k=1‖l1w,n

=

n∑
k=1

wk

∣∣∣∣2n− 1

1 + a
f

(
2k − 1

2n− 1

)∣∣∣∣
=

(2n− 1)2

1 + a
,
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and hence supremum is attained. Therefore, the operator norm is ‖P‖op = (2n−1)2
1+a .

Then by the definition of isomorphism numbers

in(Va) = sup
dimE≥n

‖P‖−1‖Q‖−1 ≥ ‖P‖−1‖Q‖−1 =
1 + a

(2n− 1)2
.
2n− 1

1 + a
=

1

2n− 1
.

�

4. Proof of Main Results

We now prove the main results.

Proof of Theorem 1.1. We know that the space L1 has the lifting property,
therefore by Lemma 3.2, we have an(Va) = dn(Va) ≤ 1

2 for all n ≥ 2. Since
approximation numbers are biggest among all the s-numbers, by Lemma 3.3, we
obtain 1

2 ≤ cn(Va) ≤ an(Va) ≤ 1
2 for all n ≥ 2 and hence an(Va) = cn(Va) = 1

2 for

all n ≥ 2. Again by lifting property, we obtain dn(Va) = an(Va) = 1
2 for all n ≥ 2,

proving (1.2). �

Proof of Theorem 1.2. By the fact that amongst all strict s-numbers, isomor-
phism numbers are smallest, Lemmas 3.4 and 3.6 give us 1

2n−1 ≤ in(Va) ≤ bn(Va) ≤
1

2n−1 for all n ∈ N, and by Lemmas 3.5 and 3.6, we obtain 1
2n−1 ≤ in(Va) ≤

mn(Va) ≤ 1
2n−1 for all n ∈ N, from where we get bn(Va) = mn(Va) = in(Va) = 1

2n−1
for all n ∈ N. This establishes (1.3). �

From [7], we give following remark.

Remark. Following the Theorem 1.2, the convergence of bn(Va) and mn(Va) to-
wards zero implies finite strict singularity and finite strict co-singularity of the
operator respectively.
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