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ROUGH I-CONVERGENCE OF SEQUENCES IN 2-NORMED

SPACES

NESAR HOSSAIN

Abstract. In this paper, we have introduced the notions of rough I-convergence
of sequences and defined I-cluster point of a sequence and proved some results

associated with this notion in 2-normed spaces. Also, we have defined rough

I-limit set of a sequence and shown that this set is closed and convex. Further,
we have defined the notion of rough I-Cauchy sequence in the same space.

1. Introduction

Since sequence convergence plays a very important role in the fundamental the-
ory of mathematics, there are many convergence concepts in summability theory,
classical measure theory, approximation theory and probability theory and the re-
lationships between them are discussed. In 1951, the idea of ordinary convergence
of real sequences was extended to statistical convergence of real sequences indepen-
dently by Fast [12], Steinhaus [29] and Schoenberg [30]. After long 50 years, in
2000 Kostyrko et al. [19] introduced the concept of I-convergence of sequences as
a generalization of statistical convergence where I is an ideal of subsets of the set
of natural numbers. Since then this idea has been nurtured by several authors in
different directions [4, 7, 21, 22, 33, 28].

In 2001, Phu [24] first introduced the notion of rough convergence of sequences
in finite dimensional normed spaces and in the same paper he investigated that
r-limit set is bounded, closed and convex and some interesting results were studied
by Phu [24, 25]. In 2003, Phu [26] extended this concept to infinite dimensional
normed spaces. Later, this notion was extended into rough statistical convergence
[1], rough ideal convergence [9, 27] and this idea was studied by many authors in
different directions and different spaces as in [2, 5, 10, 17, 18, 20]. The reader may
refer to the textbooks [6] and [23] for summability theory, sequence spaces and
related topics.

The concept of 2-normed spaces was introduced and studied by S. Gähler, a
German Mathematician who worked at German Academy of Science, Berlin, in a
series of paper in German language in Mathematische Nachrichten, see for example
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references [15, 16]. This notion which is nothing but a two dimensional analogue
of a normed space got the attention of a wider audience after the publication of
a paper by Albert George, White Jr. of USA in 1969 entitled 2-Banach spaces
[34]. In the same year Gähler published another paper on this theme in the same
journal [15]. A. H. Siddiqi delivered a series of lectures on this theme in various
conferences in India and Iran. His joint paper with S. Gähler and S. C. Gupta [16] of
1975 also provide valuable results related to the theme of this paper. Results upto
1977 were summarized in the survey paper by A. H. Siddiqi [31]. For more details,
the readers may refer to the books [13, 11]. Arslan and Dündar[2, 3] have studied
the notions of rough convergence and rough statistical convergence in 2-normed
spaces. So, nowadays, in the light of various and growing applications of ideals it
is very natural to extend the interesting notions of rough statistical convergence
in 2-normed spaces to ideal version of the convergence in the same space. In this
paper, we investigate some results in the most general possible form which are ideal
analogues to the results of [2, 3].

2. Preliminaries

Throughout the paper N and R denote the set of natural numbers and the set
of reals respectively. First we recall some basic definitions and notations.

Definition 2.1. [19] A family I of subsets of a non empty set Y is said to be an
ideal in Y if

(1) ∅ ∈ I;
(2) A,B ∈ I implies A ∪B ∈ I;
(3) A ∈ I and B ⊂ A implies B ∈ I.

An ideal I is called non trivial if Y /∈ I and I 6= {∅}. A non trivial ideal I is
called admissible if {{x} : x ∈ Y } ⊂ I.

Definition 2.2. [19] A non empty family F of subsets of a non empty set Y is
called a filter in Y if the following properties hold:

(1) ∅ /∈ F ;
(2) A,B ∈ F implies A ∩B ∈ F ;
(3) A ∈ F and A ⊂ B implies B ∈ F .

Lemma 2.1. (see[19]) If I ⊂ 2Y is a non trivial ideal then the class F(I) =
{Y \A : A ∈ I} is a filter on Y which is called filter associated with the ideal I.

Definition 2.3. (see [3]) Let K be a subset of the set of positive integers N and
let us denote the set {k ∈ K : k ≤ n} by K(n). Then the natural density of K is

δ(K) = limn→∞
|K(n)|
n , where |K(n)| denotes the number of elements in K(n).

Definition 2.4. [14] Let X be a real vector space of dimension d, where 2 ≤ d <∞.
A 2-norm on X is a function ‖., .‖ : X × X → R which satisfies the following
conditions:

(1) ‖x, y‖ = 0 if and only if x and y are linearly dependent in X;
(2) ‖x, y‖ = ‖y, x‖ for all x, y in X;
(3) ‖αx, y‖ = |α| ‖x, y‖ for all α in R and for all x, y in X;
(4) ‖x+ y, z‖ ≤ ‖x, z‖+ ‖y, z‖ for all x, y, z in X.

The pair (X, ‖., .‖) is then called a 2-normed space.
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Example 2.1. Let X = R2. Define ‖·, ·‖ on R2 by ‖x, y‖ = |x1y2 − x2y1|, where
x = (x1, x2), y = (y1, y2) ∈ R2. Then (X, ‖·, ·‖) is a 2-normed space.

Definition 2.5. Let L be an element in a 2-normed space (X, ‖·, ·‖). Then for

each non zero z ∈ X, closed ball Br(L) and open ball Br(L) of radius r > 0 with

centered L are defined as Br(L) = {y ∈ X : ‖y − L, z‖ ≤ r} and Br(L) = {y ∈ X :
‖y − L, z‖ < r}.

Definition 2.6. (see[2]) A sequence {xn}n∈N in 2-normed space (X, ‖·, ·‖) is said
to be convergent to L in X if limn→∞ ‖xn − L, z‖ = 0, for every z ∈ X. In such a

case L is called limit of {xn}n∈N and we write xn
‖·,·‖−−−→ L.

Definition 2.7. [32] Let I ⊂ 2N be a non trivial ideal in N. A sequence {xn}n∈N
in a 2-normed space X is said to be I-convergent to x ∈ X, if for each ε > 0 and
z ∈ X the set {n ∈ N : ‖xn − x, z‖ ≥ ε} belongs to I. In this case x is called I-limit

of {xn}n∈N and we write xn
I−→ x.

Definition 2.8. [2] Let {xn}n∈N be a sequence in (X, ‖·, ·‖) 2-normed linear space
and r be a non negative real number. {xn}n∈N is said to be rough convergent (r-
convergent) to L if

∀ε > 0, ∃ nε ∈ N : n ≥ nε ⇒ ‖xn − L, z‖ < r + ε.

In this case L is called rough limit (r-limit) of {xn}n∈N and we write xn
r−→ L.

In general r-limit of a sequence is no more unique for r > 0. So we consider the
so-called r-limit set of {xn}n∈N denoted by LIMr

2 (xn) and defined by LIMr
2 (xn) =

{L ∈ X : xn
r−→ L}.

Definition 2.9. [3] Let (X, ‖·, ·‖) be a 2-normed space. A sequence {xn}n∈N in X
is said to be rough statistically convergent (r2st-convergent) to L, provided the set
{n ∈ N : ‖xn − L, z‖ ≥ r + ε} has natural density zero, for every ε > 0 and each
non zero z ∈ X.

3. Main Results

Throughout the paper I stands for a non trivial admissible ideal in N and X
denotes a 2-nomed space unless otherwise stated. First we introduce the definition
of rough I-convergence in 2-normed spaces.

Definition 3.1. Let (X, ‖·, ·‖) be a 2-normed space and r be a non negative real
number. A sequence {xn}n∈N in X is said to be rough I-convergent to ξ ∈ X if for
every ε > 0 and each non zero z ∈ X the set {n ∈ N : ‖xn − ξ, z‖ ≥ r + ε} ∈ I.
In this case ξ is called rough I-limit (r − I-limit) of {xn}n∈N with respect to the

2-norm ‖·, ·‖ and we write xn
r−I−−−→ ξ.

Remark 3.1. (i) Here r is called roughness degree of rough I-convergence of the
sequence {xn}n∈N. If we put r = 0 in the above definition then the notion of rough
I-convergence coincides with the notion of ordinary I-convergence with respect to
the 2-norm ‖·, ·‖. So in this regard the whole discussion is on the fact r > 0.
(ii) Let If be the class of all finite subsets of N. Then If is a non-trivial admissible
ideal. Now, if I = If then rough I-convergence agrees with rough convergence with
respect to the 2-norm ‖·, ·‖.
(iii) If we take Iδ as the class of all subsets of N whose natural density are zero.
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Then Iδ will be a non-trivial admissible ideal. If I = Iδ then rough I-convergence
agrees with rough statistical convergence with respect to the 2-norm ‖·, ·‖.

It may happen that I-convergence of a sequence {xn}n∈N in X is not assured but
there may exist a sequence {yn}n∈N in X such that it is I-convergent and satisfies
the condition {n ∈ N : ‖xn − yn, z‖ ≥ r} ∈ I for each non zero z ∈ X. Then
{xn}n∈N is rough I-convergent to the same I-limit of {yn}n∈N. Indeed, since for
every ε > 0 and each non zero z ∈ X {n ∈ N : ‖xn − ξ, z‖ ≥ r + ε} ⊆ {n ∈ N :
‖xn − yn, z‖ ≥ r} ∪ {n ∈ N : ‖yn − ξ, z‖ ≥ ε}.

In general, the rough I-limit of a sequence is not unique in a 2-normed space
which can be described by the following example. So we consider the set of all
rough I-limits of a sequence {xn}n∈N in X denoted by I − LIMr

2 (xn) and defined

by I − LIMr
2 (xn) = {ξ ∈ X : xn

r−I−−−→ ξ}. So we have a sequence {xn}n∈N in X is
said to be rough I-convergent if I − LIMr

2 (xn) 6= ∅.

Example 3.1. Let X = R2 equipped with the 2-norm ‖·, ·‖ defined by Example 2.1.
Let I be an ideal in N which contains all those subsets of N having natural density

zero. Let us define {xn}n∈N in X by xn =

{
((−1)n, 0), if n 6= i2(i ∈ N)

(n, n), otherwise
. Then

for r ≥ 1, I − LIMr
2 (xn) = Br((−1, 0)) ∩ Br((1, 0)), since for ξ ∈ Br((−1, 0)) ∩

Br((1, 0)), where Br(x0) = {y ∈ X : ‖y − x0, z‖ ≤ r} for each non zero z ∈ X, we
have {n ∈ N : ‖xn − ξ, z‖ ≥ r + ε} ⊂ {12, 22, 32, . . . , i2, . . .}. Since the later set of
this inclusion has natural density zero, {n ∈ N : ‖xn − ξ, z‖ ≥ r + ε} ∈ I. And if
r < 1 then I − LIMr

2 (xn) = ∅. Also, we have LIMr
2 (xn) = ∅ for any r.

Remark 3.2. From the Example 3.1, we see I − LIMr
2 (xn) 6= ∅ does not imply

LIMr
2 (xn) 6= ∅. But LIMr

2 (xn) 6= ∅ always implies I − LIMr
2 (xn) 6= ∅ since a

finite subset of N belongs to I. So, we conclude LIMr
2 (xn) ⊆ I − LIMr

2 (xn).

Theorem 3.1. Let {xn}n∈N be a sequence in a 2-normed space (X, ‖·, ·‖) such that

xn
r1−I−−−→ ξ. If r1 < r2(r1, r2 > 0) then xn

r2−I−−−→ ξ.

Proof. The proof directly follows the Definition 3.1. �

Remark 3.3. From the above theorem we can conclude I − LIMr1
2 (xn) ⊂ I −

LIMr2
2 (xn).

We take r as a positive real number in the sequal unless otherwise stated.

Definition 3.2. A sequence {xn}n∈N in X is said to be I-bounded with respect to
the 2-norm ‖·, ·‖ if there exists a number G > 0 such that for each non zero z ∈ X,
the set {n ∈ N : ‖xn, z‖ ≥ G} ∈ I.

We have seen in [2] that if {xn} in X is bounded then LIMr
2 (xn) 6= ∅ and hence

I − LIMr
2 (xn) 6= ∅. Now we find out a relationship between I-boundedness of a

sequence and its rough I-limit set.

Theorem 3.2. Let {xn}n∈N be a sequence in a 2-normed space (X, ‖·, ·‖). Then
{x}n∈N is I-bounded if and only if there exists some r > 0 such that I−LIMr

2 (xn) 6=
∅.

Proof. First suppose that {xn}n∈N is an I bounded sequence. Then there exists
a number G > 0 such that for each non zero z ∈ X, {n ∈ N : ‖xn, z‖ ≥ G} ∈ I.
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Let A = {n ∈ N : ‖xn, z‖ < G} and r = sup{‖xn, z‖ : n ∈ A}. So for n ∈ A
and for each non zero z ∈ X, ‖xn, z‖ ≤ r ⇒ ‖xn − θ, z‖ < r + ε for any ε > 0,
where θ is the zero vector of X. Therefore {n ∈ N : ‖xn − θ, z‖ ≥ r + ε} ∈ I. So
θ ∈ I − LIMr

2 (xn) and hence I − LIMr
2 (xn) 6= ∅.

Conversely suppose that I − LIMr
2 (xn) 6= ∅ for some r > 0 and ξ ∈ I −

LIMr
2 (xn). Let ε > 0 be given. Then for each non zero z ∈ X, {n ∈ N :

‖xn − ξ, z‖ ≥ r + ε} ∈ I. Let M = sup{‖ξ, z‖ : z ∈ X}. Since ‖xn, z‖ ≤
‖xn − ξ, z‖ + ‖ξ, z‖ ≤ ‖xn − ξ, z‖ + M . Therefore {n ∈ N : ‖xn, z‖ ≥ r + ε +
M} ⊆ {n ∈ N : ‖xn − ξ, z‖ ≥ r + ε}. Suppose G = r + ε + M . Therefore
{n ∈ N : ‖xn, z‖ ≥ G} ∈ I. This shows that {xn}n∈N is I-bounded. �

Theorem 3.3. Let {xn}n∈N be a sequence in a 2-normed space (X, ‖·, ·‖). Then we
have diam(I −LIMr

2 (xn)) ≤ 2r. In general, diam(I −LIMr
2 (xn)) has no smaller

bound.

Proof. First suppose that diam(I − LIMr
2 (xn)) > 2r. Then there exist ξ1, ξ2 ∈

I − LIMr
2 (xn) such that for each non zero z ∈ X, ‖ξ1 − ξ2, z‖ > 2r. Let 0 < ε <

‖ξ1−ξ2,z‖
2 − r. Suppose A = {n ∈ N : ‖xn − ξ1, z‖ ≥ r + ε} and B = {n ∈ N :

‖xn − ξ2, z‖ ≥ r + ε}. Therefore A,B ∈ I. Now, for each non zero z ∈ X and
n ∈ Ac∩Bc we have ‖ξ1 − ξ2, z‖ ≤ ‖xn − ξ1, z‖+‖xn − ξ2, z‖ < r+ε+r+ε = 2(r+
ε) < ‖ξ1 − ξ2, z‖, which is a contradiction. Therefore diam(I − LIMr

2 (xn)) ≤ 2r.
Now, for the second part we suppose a sequence {xn}n∈N in X such that {xn}n∈N

is I-convergent to ξ. Then for every ε > 0 and each non zero z ∈ X, {n ∈ N :

‖xn − ξ, z‖ ≥ ε} ∈ I. Now, let A = {n ∈ N : ‖xn − ξ, z‖ ≥ ε} and β ∈ Br(ξ). So,
for n ∈ Ac and each non zero z ∈ X we have ‖xn − β, z‖ ≤ ‖xn − ξ, z‖+‖ξ − β, z‖ <
ε+ r. Therefore {n ∈ N : ‖xn − β, z‖ ≥ r + ε} ∈ I i.e. β ∈ I − LIMr

2 (xn) and as

a result, we write I − LIMr
2 (xn) = Br(ξ). This shows that upper bound 2r of the

diameter of the set I − LIMr
2 (xn) can not be reduced anymore. This completes

the proof. �

Now we will state the algebraic characterization of rough I-convergence of se-
quences in 2-normed spaces.

Theorem 3.4. Let {xn}n∈N and {yn}n∈N be two sequences in a 2-normed space
(X, ‖·, ·‖). Then, for some roughness degree r > 0 the following statements hold:

(1) If xn
r−I−−−→ ξ and α(6= 0) ∈ R then αxn

r−I−−−→ αξ

(2) If xn
r−I−−−→ ξ and yn

r−I−−−→ β then xn + yn
r−I−−−→ ξ + β.

Proof. The proof is easy. So, we omit details. �

We will discuss on some topological and geometrical properties of rough I-limit
set of a sequence.

Theorem 3.5. Let {xn}n∈N be a sequence in a 2-normed space X, ‖·, ·‖. Then the
set I − LIMr

2 (xn) is closed.

Proof. Let η be an arbitrary limit point of I − LIMr
2 (xn). Then for every ε > 0,

B ε
2
(η) ∩ I − LIMr

2 (xn) 6= ∅. Let x∗ ∈ B ε
2
(η) ∩ I − LIMr

2 (xn). Then for each non
zero z ∈ X, the set M = {n ∈ N : ‖xn − x∗, z‖ ≥ r + ε

2} ∈ I and ‖x∗ − η, z‖ < ε
2 .

Now for n ∈ M c, ‖xn − η, z‖ ≤ ‖xn − x∗, z‖ + ‖x∗ − η, z‖ < r + ε
2 + ε

2 = r + ε.
Therefore {n ∈ N : ‖xn − η, z‖ ≥ r + ε} ∈ I. Hence η ∈ I − LIMr

2 (xn). This
completes the proof. �
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Theorem 3.6. Let {xn}n∈N be a sequence in a 2-normed space X, ‖·, ·‖. Then for
some r > 0 the set I − LIMr

2 (xn) is convex.

Proof. Let ξ1, ξ2 ∈ I −LIMr
2 (xn). Then for every ε > 0 and each non zero z ∈ X,

A = {n ∈ N : ‖xn − ξ1, z‖ ≥ r + ε} ∈ I and B = {n ∈ N : ‖xn − ξ2, z‖ ≥ r + ε} ∈
I. Now, for n ∈ Ac ∩ Bc and for each α ∈ [0, 1], ‖xn − [(1− α)ξ1 + αξ2], z‖ =
‖(1− α)(xn − ξ1) + α(xn − ξ2), z‖ ≤ (1 − α) ‖xn − ξ1, z‖ + α ‖xn − ξ2, z‖ < (1 −
α)(r + ε) + α(r + ε) = r + ε. Therefore {n ∈ N : ‖xn − [(1− α)ξ1 + αξ2], z‖ ≥
r+ ε} ⊂ A∪B ∈ I. This gives (1−α)ξ1 +αξ2 ∈ I −LIMr

2 (xn) i.e. I −LIMr
2 (xn)

is a convex set. �

Theorem 3.7. A sequence {xn}n∈N in X is rough I-convergent to ξ ∈ X if and

only if there exists a sequence {yn}n∈N in X such that yn
I−→ ξ and ‖xn − yn, z‖ ≤ r

for n ∈ N and each non zero z ∈ X.

Proof. Let {xn}n∈N is rough I-convergent to ξ. Then, for each non zero z ∈ X we
have

I − lim sup ‖xn − ξ, z‖ ≤ r. (3.1)

Now, for each non zero z ∈ X we define a sequence {yn}n∈N by

yn =

{
ξ if ‖xn − ξ, z‖ ≤ r
xn + r ξ−xn

‖xn−ξ,z‖ otherwise.

i.e. we have

‖yn − ξ, z‖ =

{
0 if ‖xn − ξ, z‖ ≤ r
‖xn − ξ, z‖ − r otherwise.

Thus, from the definition of yn, we can write ‖xn − yn, z‖ ≤ r for n ∈ N and also,

using 3.1 we have I − lim sup ‖yn − ξ, z‖ = 0 i.e. yn
I−→ ξ.

Conversely, suppose that yn
I−→ ξ and ‖xn − yn, z‖ ≤ r for n ∈ N and each non

zero z ∈ X. Then for every ε > 0 and each non zero z ∈ X the set M = {n ∈ N :
‖yn − ξ, z‖ ≥ ε} ∈ I. Now for n ∈ M c, ‖xn − ξ, z‖ ≤ ‖xn − yn, z‖+ ‖yn − ξ, z‖ <
r + ε. Hence {n ∈ N : ‖xn − ξ, z‖ ≥ r + ε} ∈ I. Therefore {xn}n∈N is rough
I-convergent to ξ. This completes the proof. �

Now we introduce I-cluster point of a sequence in 2-normed spaces.

Definition 3.3. Let {xn}n∈N be a sequence in a 2-normed space (X, ‖·, ·‖). A point
x∗ ∈ X is said to be an I-cluster point of {xn}n∈N if for every ε > 0 and each non
zero z ∈ X, the set {n ∈ N : ‖xn − x∗, z‖ < ε} /∈ I. The set of all I-cluster points
of {xn}n∈N with respect to the 2-norm ‖·, ·‖ is denoted as Λxn

2 (I).

Theorem 3.8. Let {xn}n∈N be a sequence in a 2-normed space (X, ‖·, ·‖). For
an arbitrary β ∈ Λxn

2 (I) and each non zero z ∈ X we have ‖ξ − β, z‖ ≤ r for all
ξ ∈ I − LIMr

2 (xn).

Proof. If possible, let there exist β ∈ Λxn
2 (I) and ξ ∈ I − LIMr

2 (xn) such that for

each non zero z ∈ X, ‖ξ − β, z‖ > r. Choose ε = ‖ξ−β,z‖−r
2 . Therefore for each non

zero z ∈ X, A1 = {n ∈ N : ‖xn − β, z‖ < ε} /∈ I and A2 = {n ∈ N : ‖xn − ξ, z‖ ≥
r + ε} ∈ I. Now for n ∈ A1 we have ‖xn − ξ, z‖ ≥ ‖ξ − β, z‖ − ‖xn − β, z‖ >
2ε + r − ε = r + ε. This shows that n ∈ A2. Therefore A1 ⊂ A2. Since A2 ∈ I
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so it would happen A1 ∈ I, but it leads to a contradiction. This completes the
proof. �

Theorem 3.9. A sequence {xn}n∈N in a 2-normed space (X, ‖·, ·‖) is I-convergent

to ξ if and only if I − LIMr
2 (xn) = Br(ξ).

Proof. The necessity part has been already proved in Theorem 3.3. For the suf-
ficiency, let I − LIMr

2 (xn) = Br(ξ) 6= ∅. Then by Theorem 3.2, {xn}n∈N is I-
bounded. Suppose the sequence {xn}n∈N has another I-cluster point β different
from ξ. Let ξ + r

‖ξ−β,z‖ (ξ − β) = η. Then the point η satisfies ‖η − β, z‖ =

( r
‖ξ−β,z‖ + 1) ‖ξ − β, z‖ = r + ‖ξ − β, z‖ > r. Now, Since β ∈ Λxn

2 (I), by The-

orem 3.8 we have η /∈ I − LIMr
2 (xn). But this is absurd as ‖η − ξ, z‖ = r and

I − LIMr
2 (xn) = Br(ξ). Therefore ξ is the unique I-cluster point of {xn}n∈N. So

{xn}n∈N is I-convergent to ξ. This completes the proof. �

Theorem 3.10. Let {xn}n∈N be a sequence in a 2-normed space (X, ‖·, ·‖). Then
the following statements hold:

(1) If β ∈ Λxn
2 (I) then I − LIMr

2 (xn) ⊆ Br(β).

(2) I − LIMr
2 (xn) =

⋂
β∈Λxn

2 (I)Br(β) = {x0 ∈ X : Λxn
2 (I) ⊆ Br(x0)}.

Proof. (1) Let ξ ∈ I − LIMr
2 (xn) and β ∈ Λxn

2 (I). Then for each non zero z ∈ X
and by Theorem 3.8 we have ‖ξ − β, z‖ ≤ r. This implies that ξ ∈ Br(β). Therefore

I − LIMr
2 (xn) ⊆ Br(β).

(2) Using Part (1), we have I − LIMr
2 (xn) ⊆

⋂
β∈Λxn

2 (I)Br(β). Let η ∈⋂
β∈Λxn

2 (I)Br(β). Then for each non zero z ∈ X, we have ‖η − β, z‖ ≤ r, for all

β ∈ Λxn
2 (I). This shows that Λxn

2 (I) ⊆ Br(η). Also,
⋂
β∈Λxn

2 (I)Br(β) ⊆ {x0 ∈ X :

Λxn
2 (I) ⊆ Br(x0)}. Now assume η /∈ I−LIMr

2 (xn). Then there exists an ε > 0 such
that for each non zero z ∈ X, we have {n ∈ N : ‖xn − η, z‖ ≥ r+ε} /∈ I, which gives
there exists an I-cluster point β of the sequence {xn}n∈N with ‖η − β, z‖ ≥ r + ε.

Therefore Λxn
2 (I) * Br(η) and η /∈ {x0 ∈ X : Λxn

2 (I) ⊆ Br(x0)}. This gives

{x0 ∈ X : Λxn
2 (I) ⊆ Br(x0)} ⊆ I − LIMr

2 (xn). Therefore I − LIMr
2 (xn) =⋂

β∈Λxn
2 (I)Br(β) = {x0 ∈ X : Λxn

2 (I) ⊆ Br(x0)}. This completes the proof. �

Theorem 3.11. Let {xn}n∈N be an I-bounded sequence in a 2-normed space (X, ‖·, ·‖).
Then Λxn

2 (I) ⊆ I − LIMr
2 (xn) where r = diam(Λxn

2 (I)).

Proof. Let y /∈ I − LIMr
2 (xn). Then there exists an ε > 0 such that for each

non zero z ∈ X, the set {n ∈ N : ‖xn − y, z‖ ≥ r + ε} /∈ I. Again, since the
sequence {xn}n∈N is I-bounded, there exists another I-cluster point y1 ∈ X such
that ‖y − y1, z‖ > r + ε

2 for each non zero z ∈ X. Therefore y /∈ Λxn
2 (I) and hence

the result follows. �

Now we define rough I-Cauchy sequences in 2-normed spaces and investigate
some important results in the same spaces.

Definition 3.4. Let {xn}n∈N be a sequence in a 2-normed space (X, ‖·, ·‖). Then
{xn}n∈N is said to be rough I-Cauchy sequence of roughness degree ρ > 0 if for
every ε > 0 there exists m ∈ N such that {n ∈ N : ‖xn − xm, z‖ ≥ ρ + ε} ∈ I for
each non zero z ∈ X. Also, we call ρ as a I-Cauchy degree of {xn}n∈N and the
sequence {xn}n∈N is called a ρ-I-Cauchy sequence in X.
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Proposition 3.12. Let {xn}n∈N be a ρ-I-Cauchy sequence in a 2-normed space
(X, ‖·, ·‖) and ρ0 > ρ. Then ρ0 is also a I-Cauchy degree of {xn}n∈N.

Proposition 3.13. A sequence {xn}n∈N in a 2-normed space (X, ‖·, ·‖) is I-
bounded if and only if there exists a ρ > 0 such that {xn}n∈N is a ρ-I-Cauchy
sequence in X.

Theorem 3.14. Let {xn}n∈N be a sequence in a 2-normed space (X, ‖·, ·‖). Then
I − LIMr

2 (xn) 6= ∅ if and only if for every ρ ≥ 2r, {xn}n∈N is a ρ-I-Cauchy
sequence.

Proof. Let ξ ∈ I − LIMr
2 (xn). Then for every ε > 0 and each non zero z ∈ X, the

set A = {n ∈ N : ‖xn − ξ, z‖ ≥ r+ ε
2} ∈ I. So, Ac = {n ∈ N : ‖xn − ξ, z‖ < r+ ε

2} ∈
F(I). Then there exists a positive integer m ∈ Ac such that ‖xm − ξ, z‖ < r + ε

2 ,
for each non zero z ∈ X. Now for n ∈ Ac, we have

‖xn − xm, z‖ = ‖xn − ξ + ξ − xm, z‖ ≤ ‖xn − ξ, z‖+‖xm − ξ, z‖ = r+
ε

2
+r+

ε

2
= 2r+ε.

Therefore {n ∈ N : ‖xn − xm, z‖ ≥ 2r + ε} ∈ I. Hence, by Proposition 3.12 for
every ρ ≥ 2r, {xn}n∈N is a ρ-I-Cauchy sequence.

Conversely suppose that ρ is a I-Cauchy degree of {xn}n∈N for every ρ ≥ 2r > 0.
Then, by Proposition 3.13 the sequence {xn}n∈N is I-bounded. So, by Theorem
3.2, {xn}n∈N is rough I-convergent with roughness degree ρ > 0. This completes
the proof. �

4. Conclusions and future developments

In this paper, we have introduced and discussed on rough I-convergence of se-
quences in 2-normed spaces. Later on, by using these ideas as discussed in this
paper, one can extend this notion to different forms of rough convergence using
the concept of ideals and natural density in the same space such as rough I-
convergence for difference sequences, rough I2-convergence of double sequences,
rough I-statistical convergence of sequences, rough I2-lacunary statistical conver-
gence of double sequences and so on and consequently, more investigations, gener-
alizations and applications about these types of convergence can be revealed to us,
although similar results may occur in some cases.
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[7] E. Dündar, O. Talo, F. Başar, Regularly (I2, I)-convergence and regularly (I2, I)-Cauchy
double sequences of fuzzy numbers, The Scientific World Journal Int. J. Anal. Volume 2013,

Article ID 749684, 7 pages.

[8] C. Diminnie, S. Gähler, A. White, 2-inner product spaces, Demonstr. Math. 6 (1973), 525-
536.
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