THE ARITHMETIC-GEOMETRIC MEAN INEQUALITY RESULTING FROM THE FUNCTION CONTAINING e^{x} AND x^{e}

YU KONAGA, YUSUKE NISHIZAWA, RYUJI SAITO, RIKI SATO

Abstract

In this paper, we improve the arithmetic-geometric mean inequality by using the function containing e^{x} and x^{e}.

1. Introduction

For real positive numbers $a_{1}, a_{2}, \ldots a_{n}$, we define the arithmetic mean A and the geometric mean G by

$$
A=\frac{1}{n} \sum_{i=1}^{n} a_{i} \quad \text { and } \quad G=\left(\prod_{i=1}^{n} a_{i}\right)^{1 / n}
$$

Schaumberger 13 proved the arithmetic-geometric mean inequality $A \geq G$ by using the inequality $e^{x} \geq x^{e}$ for $x>0$. After that, Hassani [5] improved the arithmeticgeometric mean inequality by using the inequality $e^{x} \geq x^{e}+e^{-2}(x-e)^{2}$ for $x>0$. Hassani's argument is as follows. We consider the function

$$
F(x)=e^{x}-x^{e}-e^{-2}(x-e)^{2}
$$

for $x>0$, then the function $F(x) \geq 0$ with equality if and only if $x=e$. For $1 \leq i \leq n$, we put $x=a_{i} e / G$ in $F(x) \geq 0$ and the following inequality

$$
e^{\frac{a_{i} e}{G}} \geq\left(\frac{a_{i} e}{G}\right)^{e}+\left(\frac{a_{i}}{G}-1\right)^{2}
$$

holds, with equality if and only if $a_{i} e / G=e$. So we can get

$$
\begin{aligned}
e^{n e \frac{A}{G}} & \geq \prod_{i=1}^{n}\left(\left(\frac{a_{i} e}{G}\right)^{e}+\left(\frac{a_{i}}{G}-1\right)^{2}\right) \geq\left(\prod_{i=1}^{n} \frac{a_{i} e}{G}\right)^{e}+\prod_{i=1}^{n}\left(\frac{a_{i}}{G}-1\right)^{2} \\
& =e^{n e}\left(1+\frac{1}{e^{n e}} \prod_{i=1}^{n}\left(\frac{a_{i}}{G}-1\right)^{2}\right)
\end{aligned}
$$

[^0]Hence, we obtain

$$
n e \frac{A}{G} \geq n e+\ln \left(1+\frac{1}{e^{n e}} \prod_{i=1}^{n}\left(\frac{a_{i}}{G}-1\right)^{2}\right)
$$

and

$$
A \geq G+\frac{G}{n e} \ln \left(1+\frac{1}{e^{n e}} \prod_{i=1}^{n}\left(\frac{a_{i}}{G}-1\right)^{2}\right)
$$

Thus, we can get the inequality $A \geq G+\mathcal{R} \geq G$, where

$$
\mathcal{R}=\frac{G}{n e} \ln \left(1+\frac{1}{e^{n e}} \prod_{i=1}^{n}\left(\frac{a_{i}}{G}-1\right)^{2}\right) \geq 0
$$

Recently, Hassani et al. 6] used the function family

$$
F(x)=e^{x}-x^{e}-e^{\eta x / e-2}(x-e)^{2}
$$

to further improve the arithmetic-geometric mean inequality, where $\eta=2,3,4,5$. In 3, many proofs of the arithmetic-geometric mean inequality are posed. Moreover, new proofs and refinements of the arithmetic mean-geometric mean inequality are known, see also, [1, 2, 4, 7, 8, 9, 10, 11, 12. In this paper, we improve the arithmetic-geometric mean inequality by using a function containing e^{x} and x^{e}, which is different from the functions used by Hassani [5, 6]. We obtain the following refinements.

Theorem 1.1. For any real positive numbers $a_{1}, a_{2}, \ldots, a_{n}$ and $\alpha>0$ such that $e^{2+\alpha}-2 e^{\alpha} \alpha-2 e^{1+\alpha} \alpha+e^{\alpha} \alpha^{2}+2 \alpha^{1+e}=0$, the inequality

$$
A-G \geq \mathcal{S}_{e}
$$

holds, with equality if and only if $a_{1}=a_{2}=\cdots=a_{n}$, where

$$
\mathcal{S}_{e}=\frac{G}{n e} \sum_{i=1}^{n} \ln \left(1+c e^{2}\left(\frac{a_{i}}{G}-1\right)^{2}\right) \geq 0 \quad \text { and } \quad c=\frac{1}{2 \alpha-e^{2}+2 e \alpha-\alpha^{2}}
$$

Theorem 1.2. For any real positive numbers $a_{1}, a_{2}, \ldots, a_{n}$ and $\alpha>0$ such that $e^{2+\alpha}-2 e^{\alpha} \alpha-2 e^{1+\alpha} \alpha+e^{\alpha} \alpha^{2}+2 \alpha^{1+e}=0$, the inequality

$$
A-\frac{e G}{\alpha} \ln \alpha \geq \mathcal{S}_{\alpha}
$$

holds, with equality if and only if $a_{1}=a_{2}=\cdots=a_{n}$, where

$$
\mathcal{S}_{\alpha}=\frac{G}{n \alpha} \sum_{i=1}^{n} \ln \left(1+c\left(\frac{a_{i} \alpha}{G}-e\right)^{2}\right) \geq 0 \quad \text { and } \quad c=\frac{1}{2 \alpha-e^{2}+2 e \alpha-\alpha^{2}}
$$

Note that according to the numerical computation, it can be seen that $\alpha \cong$ 4.08175 and $c \cong 0.158618$.

2. Lemmas

We need some lemmas for the proofs of Theorems 1.1 and 1.2

THE AM-GM INEQUALITY RESULTING FROM THE FUNCTION CONTAINING e^{x} AND $x^{e} 3$

Lemma 2.1. For $x>0$, we define

$$
F_{1}(x)=e^{2+x}-2 e^{x} x-2 e^{1+x} x+e^{x} x^{2}+2 x^{1+e}
$$

Then, there exists the real number $4<\alpha<4.1$ such that $F_{1}(x)>0$ for $0<x<e$, $x>\alpha$ and $F_{1}(x)<0$ for $e<x<\alpha$.

Proof. We set

$$
f(x)=\ln \left(e^{2+x}+e^{x} x^{2}+2 x^{1+e}\right)-\ln \left(2 e^{x} x+2 e^{1+x} x\right)
$$

Obviously, $f(e)=0$ and the derivative of $f(x)$ is

$$
f^{\prime}(x)=\frac{(x-e)\left(e^{1+x}+e^{x} x-2 x^{1+e}\right)}{x\left(e^{2+x}+e^{x} x^{2}+2 x^{1+e}\right)} .
$$

We consider the sign of $e^{1+x}+e^{x} x-2 x^{1+e}$ and set

$$
g(x)=\ln \left(e^{1+x}+e^{x} x\right)-\ln \left(2 x^{1+e}\right)=x+\ln (e+x)-\ln 2-(1+e) \ln x .
$$

Obviously, $g(e)=0$ and the derivative of $g(x)$ is

$$
g^{\prime}(x)=\frac{-e-e^{2}+x^{2}}{x(e+x)}
$$

Here, we have $g^{\prime}(x)<0$ for $0<x<\sqrt{e+e^{2}} \cong 3.1792$ and $g^{\prime}(x)>0$ for $x>$ $\sqrt{e+e^{2}}$. From $\lim _{x \rightarrow 0+0} g(x)=\infty, \lim _{x \rightarrow \infty} g(x)=\infty$ and $g\left(\sqrt{e+e^{2}}\right)=-0.0400965$, there exists only one real number x_{0} such that $g(x)>0$ for $0<x<e, x>x_{0}$ and $g(x)<0$ for $e<x<x_{0}$. Hence, $f^{\prime}(x)<0$ for $0<x<e, e<x<x_{0}$ and $f^{\prime}(x)>0$ for $x>x_{0}$. Since we have $\lim _{x \rightarrow 0+0} f(x)=\infty, f(e)=0, f(4) \cong-0.000386011$ and $f(41 / 10) \cong 0.000102653$, there exists the real number $4<x_{1}<41 / 10$ such that $f(x)>0$ for $0<x<e, x>x_{1}$ and $f(x)<0$ for $e<x<x_{1}$. Thus, the proof of Lemma 2.1 is complete.

Lemma 2.2. For $x>0$ and $\alpha>0$ with $e^{2+\alpha}-2 e^{\alpha} \alpha-2 e^{1+\alpha} \alpha+e^{\alpha} \alpha^{2}+2 \alpha^{1+e}=0$, we define

$$
F_{2}(x)=e^{x}-\left(1+c(x-e)^{2}\right) x^{e}
$$

where

$$
c=\frac{1}{2 \alpha-e^{2}+2 e \alpha-\alpha^{2}} .
$$

Then, the inequality $F_{2}(x) \geq 0$ holds for $x>0$, with equality if and only if $x=e, \alpha$.
Proof. We set

$$
f(x)=\ln e^{x}-\ln \left(\left(1+c(x-e)^{2}\right) x^{e}\right)=x-\ln \left(1+c(x-e)^{2}\right)-e \ln x
$$

and the derivative of $f(x)$ is

$$
f^{\prime}(x)=1-\frac{e}{x}-\frac{2 c(x-e)}{1+c(x-e)^{2}}=\frac{(x-e) g(x)}{x\left(1+c(e-x)^{2}\right)},
$$

where

$$
g(x)=1+c e^{2}-2 c x-2 c e x+c x^{2}
$$

By Lemma 2.1, we have

$$
\frac{1}{2\left(\frac{41}{10}\right)-e^{2}+2 e\left(\frac{41}{10}\right)-4^{2}}<c<\frac{1}{2 \cdot 4-e^{2}+2 e \cdot 4-\left(\frac{41}{10}\right)^{2}}
$$

and $0.140828<c<0.180271$. Thus, $g(x)$ is convex downward for $x>0$. From

$$
g\left(1+e \pm \sqrt{1-\frac{1}{c}+2 e}\right)=0
$$

we have $g(x)>0$ for $0<x<x_{0}, x>x_{1}$ and $g(x)<0$ for $x_{0}<x<x_{1}$, where

$$
x_{0}=1+e-\sqrt{1-\frac{1}{c}+2 e} \quad \text { and } \quad x_{1}=1+e+\sqrt{1-\frac{1}{c}+2 e} .
$$

By $c=1 /\left(2 \alpha-e^{2}+2 e \alpha-\alpha^{2}\right)$, we have

$$
\begin{aligned}
x_{0} & =1+e-\sqrt{1-\left(2 \alpha-e^{2}+2 e \alpha-\alpha^{2}\right)+2 e}=1+e-\sqrt{(1+e-\alpha)^{2}} \\
& =1+e-(-1-e+\alpha)=2+2 e-\alpha>2+2 e-\frac{41}{10} \cong 3.33656
\end{aligned}
$$

and

$$
\begin{aligned}
x_{1} & =1+e+\sqrt{1-\left(2 \alpha-e^{2}+2 e \alpha-\alpha^{2}\right)+2 e}=1+e+\sqrt{(1+e-\alpha)^{2}} \\
& =1+e+(-1-e+\alpha)=\alpha .
\end{aligned}
$$

Therefore, we obtain $f^{\prime}(x)>0$ for $e<x<x_{0}, x>x_{1}$ and $f^{\prime}(x)<0$ for $0<x<e$, $x_{0}<x<x_{1}$. Hence, $f(x)$ is strictly increasing for $e<x<x_{0}, x>x_{1}$ and strictly decreasing for $0<x<e, x_{0}<x<x_{1}$. From $e^{2+\alpha}-2 e^{\alpha} \alpha-2 e^{1+\alpha} \alpha+e^{\alpha} \alpha^{2}+2 \alpha^{1+e}=$ 0 , we have $\alpha^{e}=e^{\alpha}+e^{1+\alpha}-e^{2+\alpha} /(2 \alpha)-e^{\alpha} \alpha / 2$ and

$$
\begin{aligned}
& f\left(x_{1}\right)=f(\alpha)=\ln \frac{e^{\alpha}}{\left(1+c(\alpha-e)^{2}\right) \alpha^{e}} \\
& \quad=\ln \frac{e^{\alpha}}{\left(1+c(\alpha-e)^{2}\right)\left(e^{\alpha}+e^{1+\alpha}-\frac{e^{2+\alpha}}{2 \alpha}-\frac{e^{\alpha} \alpha}{2}\right)} \\
& \quad=\ln \frac{e^{\alpha}}{\left(1+c(\alpha-e)^{2}\right)\left(\frac{e^{\alpha}\left(2 \alpha-e^{2}+2 e \alpha-\alpha^{2}\right)}{2 \alpha}\right)} \\
& \quad=\ln \frac{e^{\alpha}}{\left(1+c(\alpha-e)^{2}\right) \cdot \frac{e^{\alpha}}{2 \alpha c}}=\ln \frac{2 \alpha}{\frac{1}{c}+(\alpha-e)^{2}}=0 .
\end{aligned}
$$

By $f(e)=0$, we can get $f(x) \geq 0$ for $x>0$, with equality if and only if $x=e, \alpha$. Therefore, the proof of Lemma 2.2 is complete.

3. Proofs of Theorems

Proof of Theorem 1.1. For $1 \leq i \leq n$, we put $x=a_{i} e / G$ in $F_{2}(x) \geq 0$ and the following inequality

$$
e^{\frac{a_{i} e}{G}} \geq\left(1+c\left(\frac{a_{i} e}{G}-e\right)^{2}\right)\left(\frac{a_{i} e}{G}\right)^{e}
$$

holds, with equality if and only if $a_{i} e / G=e$. We have

$$
\begin{aligned}
e^{\frac{a_{1}+a_{2}+\cdots a_{n}}{G}} e & \geq \prod_{i=1}^{n}\left(1+c e^{2}\left(\frac{a_{i}}{G}-1\right)^{2}\right) \cdot\left(\frac{a_{1} \cdot a_{2} \cdots \cdot a_{n} \cdot e^{n}}{G^{n}}\right)^{e} \\
e^{\frac{n A}{G} e} & \geq \prod_{i=1}^{n}\left(1+c e^{2}\left(\frac{a_{i}}{G}-1\right)^{2}\right) \cdot e^{n e} \\
\frac{n A}{G} e & \geq \ln \left(\prod_{i=1}^{n}\left(1+c e^{2}\left(\frac{a_{i}}{G}-1\right)^{2}\right)\right)+n e \\
\frac{A}{G} & \geq \frac{1}{n e} \sum_{i=1}^{n} \ln \left(1+c e^{2}\left(\frac{a_{i}}{G}-1\right)^{2}\right)+1 \\
A-G & \geq \frac{G}{n e} \sum_{i=1}^{n} \ln \left(1+c e^{2}\left(\frac{a_{i}}{G}-1\right)^{2}\right)=\mathcal{S}_{e}
\end{aligned}
$$

Here, it is clear that $\mathcal{S}_{e} \geq 0$. Also, if $A-G=\mathcal{S}_{e}$ then $a_{i} / G=1$ for $1 \leq i \leq n$, so we have $a_{1}=a_{2}=\cdots=a_{n}$. Therefore, the proof of Theorem 1.1 is complete.

Proof of Theorem 1.2. For $1 \leq i \leq n$, we put $x=a_{i} \alpha / G$ in $F_{2}(x) \geq 0$ and the following inequality

$$
e^{\frac{a_{i} \alpha}{G}} \geq\left(1+c\left(\frac{a_{i} \alpha}{G}-e\right)^{2}\right)\left(\frac{a_{i} \alpha}{G}\right)^{e}
$$

holds, with equality if and only if $a_{i} \alpha / G=\alpha$. We have

$$
\begin{aligned}
e^{\frac{a_{1}+a_{2}+\cdots a_{n}}{G} \alpha} & \geq \prod_{i=1}^{n}\left(1+c\left(\frac{a_{i} \alpha}{G}-e\right)^{2}\right) \cdot\left(\frac{a_{1} \cdot a_{2} \cdots \cdot a_{n} \cdot \alpha^{n}}{G^{n}}\right)^{e}, \\
e^{\frac{n A}{G} \alpha} & \geq \prod_{i=1}^{n}\left(1+c\left(\frac{a_{i} \alpha}{G}-e\right)^{2}\right) \alpha^{n e} \\
\frac{n A}{G} \alpha & \geq \ln \left(\prod_{i=1}^{n}\left(1+c\left(\frac{a_{i} \alpha}{G}-e\right)^{2}\right)\right)+n e \ln \alpha \\
\frac{A}{G} & \geq \frac{1}{n \alpha} \sum_{i=1}^{n} \ln \left(1+c\left(\frac{a_{i} \alpha}{G}-e\right)^{2}\right)+\frac{e}{\alpha} \ln \alpha \\
A-\frac{e G}{\alpha} \ln \alpha & \geq \frac{G}{n \alpha} \sum_{i=1}^{n} \ln \left(1+c\left(\frac{a_{i} \alpha}{G}-e\right)^{2}\right)=\mathcal{S}_{\alpha}
\end{aligned}
$$

Here, it is clear that $\mathcal{S}_{\alpha} \geq 0$. Also, if $A-\frac{e G}{\alpha} \ln \alpha=\mathcal{S}_{\alpha}$ then $a_{i} / G=1$ for $1 \leq i \leq n$, that is $a_{1}=a_{2}=\cdots=a_{n}$. Therefore, the proof of Theorem 1.2 is complete.

Acknowledgments

The authors would like to thank the referees for his/her comments that helped us improve this article.

References

[1] J. M. Aldaz, A refinement of the inequality between arithmetic and geometric means, J. Math. Inequal., 2 (2008), 473-477. https://dx.doi.org/10.7153/jmi-02-42
[2] H. Alzer, A new refinement of the arithmetic mean geometric mean inequality, Rocky Mountain J. Math., 27 (1997), 663-667.
[3] P. S. Bullen, D. S. Mitrinovic, P. M. Vasic, Means and Their Inequalities, Mathematics and its Applications (East European Series), vol. 31, D. Reidel Publishing Co., Dordrecht, 1988.
[4] D. I. Cartwright and M. J.Field, A refinement of the arithmetic mean geometric mean inequality, Proc. Amer. Math. Soc., 71 (1978), 36-38.
[5] M. Hassani, On the arithmetic-geometric mean inequality, Tamkang J. Math., 44 (2013), 453-456. https://doi.org/10.5556/j.tkjm.44.2013.1418
[6] M. Hassani, V. Krasniqi and Y. Nishizawa, Refinements of Arithmetic mean-Geometric mean inequality associated with the number e, J. Inequal. Spec. Funct., 12 (2021), no.1, 23-35.
[7] A. McD. Mercer, Bounds for $A-G, A-H, G-H$ and a family of inequalities of Ky Fan's type, using a general method, J. Math. Anal. Appl., 243 (2000), 163-173.
[8] P. R. Mercer, Refined arithmetic, geometric and harmonic mean inequalities, Rocky Mountain J. Math., 33 (2003), no. 4, 1459-1464.
[9] D. S. Mitrinovic and P. M. Vasic, Analytic Inequalities, Springer-Verlag, New York, 1970.
[10] F. Qi, X.-J. Zhang, and W.-H. Li, Lévy-Khintchine representation of the geometric mean of many positive numbers and applications, Math. Inequal. Appl., 17 (2014), no. 2, 719-729. http://dx.doi.org/10.7153/mia-17-53
[11] F. Qi, X.-J. Zhang, and W.-H. Li, An integral representation for the weighted geometric mean and its applications, Acta Math. Sin., (Engl. Ser.) 30 (2014), no. 1, 61-68. https: //doi.org/10.1007/s10114-013-2547-8
[12] F. Qi and D. Lim, Integral representations of bivariate complex geometric mean and their applications, J. Comput. Appl. Math., 330 (2018), 41-58. https://doi.org/10.1016/j.cam. 2017.08 .005
[13] N. Schaumberger, The AM-GM Inequality via $x^{1 / x}$, CollegeMath. J., 20(1989), 320.
Faculty of Education, Saitama University, Shimo-okubo 255, Sakura-ku, SaitamaCity, Saitama, Japan

E-mail address: y.konaga.459@ms.saitama-u.ac.jp
Faculty of Education, Saitama University, Shimo-okubo 255, Sakura-ku, SaitamaCity, Saitama, Japan

E-mail address: ynishizawa@mail.saitama-u.ac.jp
Faculty of Education, Saitama University, Shimo-okubo 255, Sakura-ku, SaitamaCity, Saitama, Japan

E-mail address: r.saito.343@ms.saitama-u.ac.jp
Faculty of Education, Saitama University, Shimo-okubo 255, Sakura-ku, SaitamaCity, Saitama, Japan

E-mail address: r.sato.426@ms.saitama-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. 26D15, 26E60.
 Key words and phrases. Arithmetic mean-Geometric mean inequality.
 © 2023 Ilirias Research Institute, Prishtinë, Kosovë.
 Submitted July 21, 2012. Published August 19, 2023.
 Communicated by Feng Qi.

