
Journal of Inequalities and Special Functions

ISSN: 2217-4303, URL: www.ilirias.com/jiasf

Volume 14 Issue 2(2023), Pages 1-12

https://doi.org/10.54379/jiasf-2023-2-1

A NOTE ON THE GENERALIZED CONTRACTION CLASSES

AND COMMON FIXED POINTS IN NORMED SPACES

MASOOMEH HOSSEINI FARAHI, MAHMOUD HASSANI, AND REZA ALLAHYARI

Abstract. We introduce a new class of generalized contractive mapping to es-

tablish a common fixed point theorem in normed spaces. Our results improved
some known fixed-point theorems in the literature.

1. introduction and preliminaries

Let (X, d) be a metric space. A mapping T : X → X is a contraction if there
exists a constant k ∈ (0, 1) such that

d(Tx, Ty) ≤ kd(x, y),

for any x, y ∈ X.
If X is complete, then every contraction on X has a unique fixed point that can
be derived as the limit of iteration of the contraction at some point of X, which is
known as the Banach contraction principle.
In 1997, Alber and Guerre-Delabriere [3] generalized the notion of contraction as
follows:
A mapping T : X → X is a φ-weak contraction if there exists a function
φ : [0,∞)→ [0,∞) such that φ is positive on (0,∞), φ(0) = 0, and

d(Tx, Ty) ≤ d(x, y)− φ(d(x, y)),

for every x, y ∈ X.
The following classes of functions are essential in studying fixed point theorems.

(i) ψ : [0,∞)→ [0,∞) is a continuous nondecreasing function with ψ(t) = 0 if
and only if t = 0.

(ii) φ : [0,∞)→ [0,∞) is a lower semi continuous function with φ(t) = 0 if and
only if t = 0.

(iii) θ : [0,∞) → [0,∞) is a continuous function with θ(t) = 0 if and only if
t = 0.
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Throughout the paper, Ψ is the set of all functions ψ satisfying (i), Φ is the set of
all functions φ satisfying (ii) and Θ is the set of all functions θ satisfying (iii).

In [3], the authors have shown that every single-valued φ-weak contraction on
a Hilbert space has a unique fixed point. Rhoades [18] showed that most parts
of the results of [3] are true for any Banach space. He also proved the following
generalization of the Banach contraction principle:

Theorem 1.1. Let (X, d) be a complete metric space and T : X → X be a φ-weak
contraction on X, where φ : [0,∞)→ [0,∞) is a continuous nondecreasing function
with φ(t) > 0 for all t > 0 and φ(0) = 0, then T has a unique fixed point.

Dutta and Choudhury [13] proved the following extension of Theorem 1.1.

Theorem 1.2. Let (X, d) be a complete metric space and let the map
T : X → X satisfies the inequality

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− φ(d(x, y)) (x, y ∈ X),

where ψ, φ : [0,∞) → [0,∞) are both continuous and monotone nondecreasing
functions with ψ(t) = φ(t) = 0 if and only if t = 0. Then T has a unique fixed
point.

Doric [12] generalized Theorem 1.2 as follows:

Theorem 1.3. Let (X, d) be a complete metric space and let the map
T : X → X satisfies the inequality

ψ(d(Tx, Ty)) ≤ ψ(M(x, y))− φ(M(x, y)),

for any x, y ∈ X, where M is given by

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
1

2
(d(x, Ty) + d(Tx, y))},

and

(i) ψ : [0,∞)→ [0,∞) is a continuous monotone nondecreasing function with
ψ(t) = 0 if and only if t = 0,

(ii) φ : [0,∞) → [0,∞) is a lower semi-continuous function with φ(t) = 0 if
and only if t = 0.
Then T has a unique fixed point.

Fixed point theorems for multi-valued operators using the Hausdorff metric were
initiated by Nadler [16] in 1969. The concept of a b-metric space was introduced
by Bakhtin [5] and later used by Czerwik [9]. After that, several interesting results
about the existence of fixed points for single-valued and multi-valued operators in
b-metric spaces have been obtained (see, e.g., [1, 2, 6, 7, 10, 14, 15, 17, 19]).

In 2012, Bota et al. [4] proved the following theorem in complete b-metric spaces:

Theorem 1.4. Let (X, d) be a complete b-metric space and φ : [0,∞)→ [0,∞) is
a lower semi continuous function with φ(t) = 0 if and only if t = 0. Suppose that
T : X → X, S : X → CB(X), where CB(X) denotes the family of all nonempty
closed bounded subsets of X, are such that for all x, y ∈ X

H({Tx}, Sy) ≤M(x, y)− φ(M(x, y))
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where

M(x, y) = max{d(x, y), D(x, Tx), D(y, Sy),
1

2s
(D(x, Sy) +D(y, Tx))},

then T and S have a unique common fixed point in X.

This paper presents a new common fixed point theorem for multi-valued and
single-valued operators on complete normed spaces.
Our results generalize some well-known common fixed point theorems given by
Zhang and Song [20], Rhoades [18], Ćirić [8], Daffer and Kaneko [11], and Aydi,
Bota, Karapinar, and Moradi [4].

In the sequel, we recall some well-known facts which will be needed later. Through-
out this paper, R denotes the real line, and N is the set of all natural numbers.

Definition 1.5. Let X ⊆ R be a vector space. A nonnegative function ‖·‖ :X → R+

is called a norm provided that, for all x, y ∈ X, the following conditions hold:

i) ‖x‖ = 0 implies x = 0;
ii) ‖λx‖ = |λ| ‖x‖ for every λ ∈ R;
iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

The pair (X, ‖·‖) is called a normed space.

Definition 1.6. Let X be a normed vector space.

(i) A sequence {xn} in X is called convergent if there exists x ∈ X such that
‖xn − x‖ → 0 as n→∞. In this case, we write lim

n→∞
xn = x.

(ii) A sequence {xn} in X is called Cauchy if ‖xn − xm‖ → 0 as n,m→∞.
(iii) A normed vector space X is said to be complete if every Cauchy sequence

in X converges.
(iv) A set B ⊂ X is said to be closed if for any sequence {xn} in B which {xn}

is convergent to z ∈ X, we have z ∈ B.

Proposition 1.7. In a normed vector space, the following assertions hold:

(i) Let (X, ‖·‖) be a normed vector space. Let {xn} be a sequence in (X, ‖·‖).
Then {xn} can have at most one limit.

(ii) Every convergent sequence is Cauchy in any normed linear space.

Let X be a normed vector space, and let CB(X) be the family of all nonempty
closed bounded subsets of X. For A,B ∈ CB(X), we define

H(A,B) = max{ρ(A,B), ρ(B,A)},
where

ρ(A,B) = sup{D(a,B), a ∈ A}, ρ(B,A) = sup{D(b, A), b ∈ B}
with

D(a,C) = inf{‖a− x‖ , x ∈ C}, (C ∈ CB(X)).

The following result follows directly from these concepts.

Lemma 1.8. Let X be a normed vector space.
For any A,B,C ∈ CB(X) and any x, y ∈ X, we have the following assertions:

(i) D(x,A) = 0⇔ x ∈ Ā = A,
(ii) D(x,B) ≤ ‖x− b‖ for any b ∈ B,

(iii) ρ(A,B) ≤ H(A,B),
(iv) D(x,B) ≤ H(A,B) for all x ∈ A,
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(v) H(A,A) = 0,
(vi) H(A,B) = H(B,A),

(vii) H(A,C) ≤ H(A,B) +H(B,C),
(viii) D(x,A) ≤ ‖x− y‖+D(y,A).

(ix) for every α > 0, b ∈ B, there exists a ∈ A such that

‖a− b‖ ≤ H(A,B) + α.

2. Main result

This section demonstrates a common fixed point theorem for a new class of
generalized contractive mapping in normed spaces.

Theorem 2.1. Let X be a complete normed vector space and ψ ∈ Ψ, φ ∈ Φ, and
θ ∈ Θ. Consider the maps T : X → X, S : X → CB(X) where S is a multi-valued
map and a constant L > 0 be such that the inequality

ψ(H({Tx}, Sy)) ≤ ψ(M(x, y))− φ(θ(M(x, y))) + Lψ(N(x, y)) (2.1)

holds for all x, y ∈ X, where

M(x, y) = max{‖x− y‖ , D(x, Tx), D(y, Sy),
1

2
[D(x, Sy) +D(y, Tx)]},

N(x, y) = min{D(x, Tx), D(y, Ty), D(x, Sy), D(y, Tx)}.
Then S and T have a unique common fixed point in X, that is, there exists z ∈ X
such that z = Tz and z ∈ Sz.

Proof. It is easy to show that x = y is a common fixed point of T and S if and only
if M(x, y) = 0. Thus we suppose that for all x, y ∈ X, we have M(x, y) > 0.
We will complete the proof through the following steps:
Step 1: Let x0 ∈ X and x1 ∈ Sx0. Set x2 = Tx1.

By choosing α = φ(θ(M(x2,x1)))
2 in Lemma 1.8, there exists x3 ∈ Sx2 such that

‖x3 − x2‖ ≤ H({Tx1}, Sx2) +
φ(θ(M(x2, x1)))

2
.

We let x4 = Tx3. Analogously, one can find x5 ∈ Sx4 such that

‖x5 − x4‖ ≤ H({Tx3}, Sx4) +
φ(θ(M(x4, x3)))

2
.

Inductively, we let x2n = Tx2n−1, and by lemma 1.8, there exists x2n+1 ∈ Sx2n
such that

‖x2n+1 − x2n‖ ≤ H({Tx2n−1}, Sx2n) +
φ(θ(M(x2n, x2n−1)))

2

≤ H({Tx2n−1}, Sx2n) +
φ(θ(M(x2n, x2n−1)))

2
.

Since ψ is nondecreasing, we have

ψ(‖x2n+1 − x2n‖) = ψ(D{Tx2n−1}, x2n+1))

≤ ψ(H({Tx2n−1}, Sx2n))

≤ ψ(H({Tx2n−1}, Sx2n)). (2.2)

Thus

ψ(‖x2n+1 − x2n‖) ≤ ψ(H({Tx2n−1}, Sx2n)) +
φ(θ(M(x2n, x2n−1)))

2
.
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From (2.1) we get that

ψ(‖x2n+1 − x2n‖) ≤ψ(M(x2n, x2n−1))− φ(θ(M(x2n, x2n−1)))

2
+ Lψ(N(x2n, x2n−1)). (2.3)

Step2: We show that lim
n→+∞

‖xn − xn+1‖ = 0.

For any n ∈ N, we have

‖x2n−1 − x2n‖ ≤M(x2n−1, x2n)

= max{‖x2n−1 − x2n‖ , D(x2n−1, Tx2n−1), D(x2n, Sx2n)

,
1

2
[D(x2n−1, Sx2n) +D(x2n, Tx2n−1)]}

≤max{‖x2n−1 − x2n‖ , ‖x2n−1 − x2n‖ , ‖x2n − x2n+1‖

,
1

2
‖x2n−1 − x2n+1‖}

≤max{‖x2n−1 − x2n‖ , ‖x2n − x2n+1‖

,
1

2
[(‖x2n−1 − x2n‖+ ‖x2n − x2n+1‖)]}

= max{‖x2n−1 − x2n‖ , ‖x2n − x2n+1‖}.

If max{‖x2n−1 − x2n‖ , ‖x2n − x2n+1‖} = ‖x2n − x2n+1‖ , from (2.3) and using the
fact that N(x2n, x2n−1) = 0, we have

ψ(‖x2n+1 − x2n‖) ≤ψ(M(x2n, x2n−1))− φ(θ(M(x2n, x2n−1)))

2
+ Lψ(N(x2n, x2n−1)))

≤ψ(‖x2n − x2n+1‖)−
φ(θ(M(x2n, x2n−1)))

2
.

So ϕ(θ(M(x2n,x2n−1)))
2 = 0, that is, M(x2n, x2n−1) = 0, which is a contradiction.

Hence max{‖x2n−1 − x2n‖ , ‖x2n − x2n+1‖} = ‖x2n−1 − x2n‖ . ThenM(x2n−1, x2n) =
‖x2n−1 − x2n‖ for each n ≥ 1. We have

‖x2n − x2n+1‖ ≤ ‖x2n−1 − x2n‖ . (2.4)

Similar to the process of (2.2), we get also

ψ(‖x2n+1 − x2n+2‖) ≤ψ(H({Tx2n+1}, Sx2n)).

By using (2.1) we have

ψ(‖x2n+1 − x2n+2‖) ≤ψ(M(x2n+1, x2n))− φ(θ(M(x2n+1, x2n)))

+ Lψ(N(x2n+1, x2n)), (2.5)
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where

M(x2n+1, x2n) = max{‖x2n+1 − x2n‖ , D(x2n+1, Tx2n+1), D(x2n, Sx2n)

,
1

2
[D(x2n+1, Sx2n) +D(x2n, Tx2n+1)]}

≤max{‖x2n+1 − x2n‖ , ‖x2n+1 − x2n+2‖ , ‖x2n − x2n+1‖

,
1

2
[‖x2n+1 − x2n+1‖+ ‖x2n − x2n+2‖]}

≤max{‖{dx2n+1 − x2n‖ , ‖x2n+1 − x2n+2‖

,
‖x2n − x2n+1‖+ ‖x2n+1 − x2n+2‖

2
}

= max{‖x2n+1 − x2n‖ , ‖x2n+1 − x2n+2‖}
= ‖x2n+1 − x2n‖ .

If max{‖x2n+1 − x2n‖ , ‖x2n+1 − x2n+2‖} = ‖x2n+1 − x2n+2‖, from (2.5) and using
the fact N(x2n+1, x2n) = 0 we have

ψ(‖x2n+1 − x2n+2‖) ≤ψ(M(x2n+1, x2n))− φ(θ(M(x2n+1, x2n)))

<ψ(M(x2n+1, x2n))

=ψ(‖x2n+1 − x2n+2‖).
Thus

ψ(‖x2n+1 − x2n+2‖) < ψ(‖x2n+1 − x2n+2‖),
which is a contradiction. Therefore

M(x2n+1, x2n) = ‖x2n+1 − x2n‖
and

‖x2n+1 − x2n+2‖ ≤ ‖x2n+1 − x2n‖ . (2.6)

From (2.4) and (2.6), we get that

‖xn − xn+1‖ ≤ ‖xn−1 − xn‖ , ∀n ≥ 0.

Thus {‖xn − xn+1‖ ; n ∈ N} is a non-increasing sequence of positive numbers.
Hence, there is l ≥ 0 such that

lim
n→∞

M(xn, xn+1) = lim
n→∞

‖xn − xn+1‖ = l ≥ 0.

We show that l = 0. On the contrary, suppose l > 0. We know φ(θ(l)) > 0 from
(2.3) and taking limits as n→∞, since φ is lower semi-continuous, we get

ψ(l) ≤ψ(l)− φ(θ(l))

2
+ Lψ(0)

<ψ(l)

this is a contradiction, thus l = 0. So we have

lim
n→∞

‖xn − xn+1‖ = 0. (2.7)

Step 3: We will prove that {xn} is a Cauchy sequence. Because of (2.7), it is
sufficient to show that {x2n} is a Cauchy sequence.

Suppose {x2n} is not a Cauchy sequence. Then there exists ε > 0, for which
we can find two subsequences {x2mi}, {x2ni} of {x2n} such that ni is the smallest
index, for which

ni > mi > i, ‖x2mi − x2ni‖ ≥ ε.
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This means that
‖x2mi − x2ni−2‖ < ε. (2.8)

By using the triangular inequality, we get

ε ≤ ‖x2mi − x2ni‖ ≤ ‖x2mi − x2mi+1‖+ ‖x2mi+1 − x2ni‖ .
By taking the upper limits as i→∞, we get

ε ≤ lim
i→∞

sup ‖x2mi+1 − x2ni‖ . (2.9)

On the other hand, we have

‖x2mi − x2ni−1‖ ≤ ‖x2mi − x2ni−2‖+ ‖x2ni−2 − x2ni−1‖ .
Using (2.8) and taking the upper limit as i→∞, we get

lim
i→∞

sup ‖x2mi − x2ni−1‖ ≤ ε. (2.10)

Again, using the triangular inequality, we have

ε ≤ ‖x2mi − x2ni‖ ≤ ‖x2mi − x2ni−1‖+ ‖x2ni−1 − x2ni‖ .
By taking the upper limit as i→∞, we get

ε ≤ lim
i→∞

sup ‖x2mi − x2ni−1‖ . (2.11)

From (2.10) and (2.11), we have

ε ≤ lim sup
i→∞

‖x2mi − x2ni−1‖ ≤ ε. (2.12)

Again, using the triangular inequality, we have

ε ≤‖x2mi − x2ni‖ ≤ ‖x2mi − x2ni−2‖+ ‖x2ni−2 − x2ni‖
≤‖x2mi − x2ni−2‖+ ‖x2ni−2 − x2ni−1‖+ ‖x2ni−1 − x2ni‖ .

By taking the upper limit as i→∞, using (2.8) we obtain

ε ≤ lim sup
i→∞

‖x2mi − x2ni‖ ≤ ε. (2.13)

Again, using the triangular inequality, we infer that

‖x2mi+1 − x2ni−1‖ ≤ ‖x2mi+1 − x2mi‖+ ‖x2mi − x2ni−1‖ .
By using (2.10) and taking the upper limit as i→∞, we reach to

lim sup
i→∞

‖x2mi+1 − x2ni−1‖ ≤ ε. (2.14)

Again, using the triangular inequality, we get

ε ≤‖x2mi − x2ni‖ ≤ ‖x2mi − x2mi+1‖+ ‖x2mi+1 − x2ni‖
≤‖x2mi − x2mi+1‖+ ‖x2mi+1 − x2ni−1‖+ ‖x2ni−1 − x2ni‖ .

By taking the upper limit as i→∞, and using (2.14) we have

ε ≤ lim sup
i→∞

‖x2mi+1 − x2ni−1‖ ≤ ε. (2.15)

From (2.1) and similar to the process (2.2) we get

ψ(‖x2mi+1 − x2ni‖) ≤ψ(H(Sx2mi, {Tx2ni−1}))
≤ψ(M(x2mi, x2ni−1))− φ(θ(M(x2mi, x2ni−1))

+ Lψ(N(x2mi, x2ni−1)), (2.16)
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where

M(x2mi, x2ni−1) = max{‖x2mi − x2ni−1‖ , D(x2mi, Tx2mi), D(x2ni−1, Sx2ni−1)

,
1

2
[D(x2mi, Sx2ni−1) +D(x2ni−1, Tx2mi)]}

≤max{‖x2mi − x2ni−1‖ , ‖x2mi − x2mi+1‖ , ‖x2ni − x2ni−1‖

,
1

2
[‖x2mi − x2ni‖+ ‖x2mi+1 − x2ni−1‖]}.

Taking the upper limit and using (2.10), (2.13) and (2.14), we have

lim sup
i→∞

M(x2mi, x2ni−1) ≤max{lim sup
i→∞

‖x2mi − x2ni−1‖

, lim sup
i→∞

‖x2mi − x2mi+1‖ , lim sup
i→∞

‖x2ni − x2ni−1‖

,
lim supi→∞ ‖x2mi − x2ni‖+ lim supi→∞ ‖x2mi+1 − x2ni−1‖

2
}

≤max{ε, 0, 0, } = ε,

and using (2.12), (2.13), and (2.15) we have

min

{
ε,
ε+ ε

2

}
= ε

we get

ε ≤ lim sup
i→∞

M(x2mi, x2ni−1) ≤ ε

and

ε ≤ lim inf
i→∞

M(x2mi, x2ni−1) ≤ ε (2.17)

and

N(x2mi, x2ni−1) = min{D(x2mi, Tx2mi), D(x2ni−1, Tx2ni−1),

D(x2mi, Sx2ni−1), D(x2ni−1, Tx2mi)}. (2.18)

From (2.18), lim sup
i→∞

N(x2mi, x2ni−1) = 0.

Now taking the upper limit as i → ∞ in (2.16) and using (2.9) and (2.18) we
have

ψ(ε) = ψ(1 · ε) ≤ψ(lim sup
i→∞

‖x2mi+1 − x2ni‖)

≤ψ(lim sup
i→∞

M(x2mi, x2ni−1))

− φ(θ(lim inf
i→∞

M(x2mi, x2ni−1)))

≤ψ(ε)− φ(θ(lim inf
i→∞

M(x2mi, x2ni−1)))

which implies that

φ(θ(lim inf
i→∞

M(x2mi, x2ni−1))) = 0.

Thus

lim inf
i→∞

M(x2mi, x2ni−1) = 0

which is in contradiction with (2.17).
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Hence {xn} is a Cauchy sequence in X.
Step 4: As {xn} is a Cauchy sequence and X is a complete normed space, there
exists u ∈ X such that

lim
n→∞

‖xn − u‖ = 0.

We show that u = Tu and u ∈ Su. Similar to the process (2.2)

ψ(D(x2n+2, Su) ≤ ψ(H({Tx2n+1}, Su))

≤ ψ(M(x2n+1, u))− φ(θ(M(x2n+1, u)))

+ Lψ(N(x2n+1, u)), (2.19)

D(u, Su) ≤M(x2n+1, u)

= max{‖x2n+1 − u‖ , ‖x2n+1 − x2n+2‖ , D(u, Su)

,
1

2
[D(x2n+1, Su) + ‖u− x2n+2‖]}. (2.20)

By using the triangular inequality, we have

‖x2n+1 − u‖ ≤ ‖x2n+1 − x2n‖+ ‖x2n − u‖ .

As

lim
n→∞

‖x2n+1 − u‖ = 0 and lim
n→∞

‖x2n+2 − u‖ = 0. (2.21)

Again, using the triangular inequality, we get

D(x2n+1, Su) ≤ (‖x2n+1 − u‖+D(u, Su)).

By using (2.21)

lim
n→∞

D(x2n+1, Su) ≤ D(u, Su).

By taking limit from (2.20)

D(u, Su) ≤ lim
n→∞

M(x2n+1, u)

≤max{D(u, Su),
D(u, Su)

2
} = D(u, Su),

lim
n→∞

M(x2n+1, u) = D(u, Su). (2.22)

As

D(u, Su) ≤ [‖u− x2n+2‖+D(x2n+2, Su)],

by taking the upper limit as n→∞, we have

D(u, Su) ≤ lim sup
n→∞

D(x2n+2, Su) (2.23)

and lim
n→∞

N(x2n+1, u) = 0. Because ψ is continuous, by using (2.19), (2.22), (2.23)

we have

ψ(D(u, Su)) ≤ ψ(D(u, Su))− φ(θ(D(u, Su))).

Then φ(θ(D(u, Su))) = 0. Thus D(u, Su) = 0.
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We conclude that u ∈ Su. From (2.1) we have

ψ(D(Tu, u)) ≤ψ(D(Tu, u))

≤ψ(s2H({Tu}, Su))

≤ψ(M(u, u)− φ(θ(M(u, u)))

+ Lψ(N(u, u)). (2.24)

As

M(u, u) = max{‖u− u‖ , D(u, Tu), D(u, Su),
1

2
[D(u, Su) +D(u, Tu)]}

= max{D(u, Tu),
D(u, Tu)

2
} = D(u, Tu).

Moreover as N(u, u) = 0 from (2.24) we have

ψ(D(Tu, u)) ≤ ψ(D(Tu, u))− φ(θ(D(Tu, u))) + 0.

Then φ(θ(D(Tu, u))) = 0. Thus D(u, Tu) = 0⇒ u = Tu.
Step 5: Now, we show that the fixed point is unique. Suppose that z is another

fixed point of S and T , i.e., z = Tz and z ∈ Sz, then

ψ(‖u− z‖) =ψ(D(Tu, z)) ≤ ψ(D(Tu, z)) ≤ ψ(H({Tu}, Sz))
≤ψ(M(u, z))− φ(θ(M(u, z)) + Lψ(N(u, z)), (2.25)

‖u− z‖ ≤M(u, z) = max{‖u− z‖ , D(u, Tu), D(z, Sz)

,
1

2
[D(u, Sz) +D(z, Tu)]}.

Hence
M(u, z) = ‖u− z‖ .

Moreover, N(u, z) = 0, from (2.25) we have

ψ(‖u− z‖) ≤ ψ(‖u− z‖)− φ(θ(‖u− z‖)).
Then φ(θ(‖u− z‖)) = 0. Thus ‖u− z‖ = 0, i.e. u = z.

�

Here are some examples of functions and maps that satisfy the conditions of
Theorem 2.1.

Example 2.2. Let X be a Hilbert space, T : X → X be a nonexpansive map
(i.e., ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ X), and S : X → CB (X) be a firmly
nonexpansive map (i.e., for any x ∈ X, the set {y ∈ X : y ∈ Sy} is nonempty and

closed, and ‖y − x‖2 + ‖Sy − Sx‖2 ≥ ‖y − Sx‖2 + ‖x− Sx‖2 for all y ∈ Sy). In
this casem we can choose ψ (t) = t, φ (t) = t/2 , and θ (t) = t/2 . The constant L
can be chosen to be 1. Then the inequality in Theorem 2.1 holds, and the map T
and the multi-valued map S have a unique common fixed point.

Example 2.3. Let X = C [0, 1] be the space of continuos functions on [0, 1],
equipped with the sup norm, and let T : X → X be the Volterra operator de-
fined by (Tf) (x) =

∫ x
0
f (t) dt for f ∈ X and x ∈ [0, 1]. Let S : X → CB (X) be

the set-valued map defined by (Sf) (x) = {f (x)} for f ∈ X and x ∈ [0, 1]. In this
case, we can choose ψ (t) = t, φ (t) =

√
t/2 , and θ (t) =

√
t/2 . The constant L

can be choosen to be 1/
√

2 . Then the inequality in Theorem 2.1 holds, and the
map T and the multi-valued map S have a unique common fixed point.
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Example 2.4. Let X = Lp ([0, 1]) be the space of Lebesgue measurable functions
on [0, 1], that are integrable to the p-th power, equipped with the Lp norm where
1 < p < ∞. Let T : X → X be the integral operator defined by (Tf) (x) =∫ 1

0
K (x, t) f (t) dt for f ∈ X and x ∈ [0, 1], where K (x, t) is a Kernel function

satisfying certain conditions. Let S : X → CB (X) be the set-valued map defined

by (Sf) (x) =

{
g ∈ X : g (x) = sup

t∈[0,1]
f (t)

}
for f ∈ X and x ∈ [0, 1]. In this case,

we can choose ψ (t) = tp, φ (t) = tp/2 , and θ (t) = t1/p . The constant L can be
choosen to be 1/

√
p . Then the inequality in Theorem 2.1 holds, and the map T

and the multi-valued map S have a unique common fixed point.
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