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ASYMPTOTIC EXPRESSIONS AND FORMULAS FOR FINITE

SUMS OF POWERS OF BINOMIAL COEFFICIENTS INVOLVING

SPECIAL NUMBERS AND POLYNOMIALS

NESLIHAN KILAR

Abstract. The main objective in this paper is to study on special numbers

and polynomials that contain finite sums of powers of binomial coefficients.
By using generating function methods, some formulas and relations related to

these numbers and the Apostol-Bernoulli and Apostol-Euler numbers of nega-
tive higher order, the Bernoulli and Euler numbers, the Stirling type numbers,

the combinatorial numbers, the Bell polynomials, the Fubini type polynomials,

and the Legendre polynomials are presented. Moreover, asymptotic expres-
sions of the finite sums of powers of binomial coefficients for these numbers are

given. Some numeric values of these asymptotic expressions are illustrated by

the tables. Finally, some inequalities for these numbers are given.

1. Introduction

The binomial coefficients and finite sums including higher powers of binomial
coefficients have been frequently used in many areas of mathematics and other
applied sciences. In order to study finite sums involving binomial coefficients, there
are many different techniques. Among these techniques, generating functions are
commonly used ones, and Simsek [40] gave the following novel generating functions
for sums of finite sums of powers of binomial coefficients:

1

n!

n∑
k=0

(
n

k

)p
λketk =

∞∑
m=0

y6 (m,n;λ, p)
tm

m!
, (1.1)

where n, p ∈ N = {1, 2, 3, ...} and λ ∈ R (or C).
Here and in the following let Z, R and C denote the sets of integers, real numbers

and complex numbers, respectively. Also let N0 = N ∪ {0}.
The numbers y6 (m,n;λ, p) are computed by the following formula:

y6 (m,n;λ, p) =
1

n!

n∑
k=0

(
n

k

)p
λkkm, (1.2)
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where m,n, p ∈ N0 (cf. [40, Eq. (14)]).
Simsek [40] gave the following values for the numbers y6 (m,n;λ, p) involving

well-known finite sums:
When p = 1, λ = 1 and m = 0 in (1.2), we have

y6 (0, n; 1, 1) =
1

n!

n∑
k=0

(
n

k

)
=

2n

n!
, (1.3)

when p = 2, λ = 1 and m = 0 in (1.2), we obtain

y6 (0, n; 1, 2) =
1

n!

n∑
k=0

(
n

k

)2

=

(
2n
n

)
n!

(1.4)

and putting p = 1, λ = −1 and m = 0 in (1.2), we have

y6 (0, n;−1, 1) =
1

n!

n∑
k=0

(−1)k
(
n

k

)
= 0,

for detail, see [40]. The above sums have also been studied by many authors (cf.
[1]-[46]).

Here we note that Simsek introduced many different combinatorial type numbers
and polynomials. Thats why, he gave some notations to distinguish these numbers
and polynomials from one another. So, the number 6 is just an index representation
for the numbers y6 (m,n;λ, p) (see, for detail, [37]-[42]).

Moreover, when p = 1 in (1.2), the numbers y6 (m,n;λ, p) are reduced to the
following combinatorial numbers, which are called Simsek numbers by Goubi [10]:

y6 (m,n;λ, 1) = y1 (m,n;λ) (1.5)

which are defined by means of the following generating function:

(λet + 1)
v

v!
=

∞∑
m=0

y1 (m, v;λ)
tm

m!
, (1.6)

where v ∈ N0, λ ∈ C and

y1 (m, v;λ) =
1

v!

v∑
j=0

(
v

j

)
jmλj ,

where m ∈ N0 (cf. [37, Eqs. (8) and (9)]).
The numbers y6 (m,n;λ, p) are related to many different combinatorial type

numbers and polynomials. Recently, many authors, such as Goubi [9, 10], Khan
et al. [12], Kucukoglu [18], Kucukoglu and Simsek [19]-[21], Kilar [13] and Xu
[46], have given results that include sums of powers of binomial coefficients and
combinatorial type numbers. Besides, one method to approach the binomial co-
efficient is by means of the Stirlings approximation. The Stirling’s approximation
(or Stirling’s formula), named after James Stirling, is a factorial approximation in
mathematics. This formula has been studied by many authors and used in many
fields, such as mathematics and physics. Moreover, this formula is a good and
useful approximation that leads to accurate results even for small values of n (see,
for detail, [4, 23, 26, 31, 33, 34, 40, 43, 45]). Therefore, the main motivation of
this paper is to give some new relations and formulas including some special num-
bers and polynomials, with the help of an asymptotic expression of sums of powers
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of binomial coefficients, the Stirlings approximation formula, and generating func-
tions with functional equations techniques. The numeric values of these results are
displayed in tables. We also give some inequalities for these numbers.

We now briefly give some notations, definitions and generating functions of some
special numbers and polynomials.

Let α ∈ C and r ∈ N,

{α}r = α (α− 1) (α− 2) ... (α− r + 1) =

(
α

r

)
r!

with {α}0 = 1 and

0r =

{
1 r = 0
0 r ∈ N .

The Stirling numbers of the second kind are defined by

(et − 1)
v

v!
=

∞∑
m=0

S2 (m, v)
tm

m!
, (1.7)

where v ∈ N0, and

xm =

m∑
v=0

{x}v S2 (m, v)

with S2 (0, 0) = 1 and

S2 (m, v) = 0, (v > m)

S2 (m, 0) = 0, (m ∈ N)

S2 (m,m) = 1, (m ∈ N)

S2 (m, 1) = 1, (m ∈ N)

(cf. [1]-[46]).
By using (1.7), the numbers S2 (m, v) are computed by

S2 (m, v) =
1

v!

v∑
r=0

(−1)
r

(
v

r

)
(v − r)m

(cf. [1]-[46]).
The Apostol-Bernoulli polynomials of order k are defined by(

t

λet − 1

)k
etx =

∞∑
m=0

B(k)m (x;λ)
tm

m!
, (1.8)

where |t| < 2π when λ = 1; |t| < |lnλ| when λ 6= 1 and k ∈ Z (cf. [28, Eq. (9)],
[44, 45]).

When x = 0 in (1.8), we have the Apostol-Bernoulli numbers of order k

B(k)m (0;λ) = B(k)m (λ)

(cf. [27, 44, 45]).
One can observe that

B(1)m (x;λ) = Bm (x;λ) and B(1)m (λ) = Bm (λ) .

Taking k = 0 in (1.8), we have

B(0)m (x;λ) = xm
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and also for x = 0 in the above equation, one has

B(0)m (λ) =

{
1, m = 0
0, m ∈ N .

Substituting p = 0 into (1.2) and using (1.8) for k = 1, we get

(n− 1)!y6 (m− 1, n− 1;λ, 0) =

n−1∑
k=0

λkkm−1 =
λmBm (n;λ)− Bm (λ)

m

(cf. [40]).
Substituting λ = 1 into (1.8), we have the Bernoulli polynomials of order k

B(k)m (x; 1) = B(k)
m (x)

which are defined by means of the following generating function:(
t

et − 1

)k
etx =

∞∑
m=0

B(k)
m (x)

tm

m!
(1.9)

(cf. [27, 44, 45]).
When x = 0 in (1.9), we have

B(k)
m (0) = B(k)

m

which B
(k)
m denote the Bernoulli numbers of order k (cf. [28, 44, 45]).

Using (1.7) and (1.9), we have

tnetv = n!

∞∑
m=0

S2 (m,n)
tm

m!

∞∑
m=0

B(n)
m (v)

tm

m!
.

Hence
∞∑
m=0

v∑
s=0

(
v

s

)
{m}n+sB

(−s)
m−n−s

tm

m!
= n!

∞∑
m=0

m∑
j=0

(
m

j

)
S2 (j, n)B

(n)
m−j (v)

tm

m!
.

Comparing the coefficients of tm

m! on both sides of the above equation, after some
calculations, we have the following presumably known formula:

v∑
s=0

(
v

s

)
{m+ n}n+sB

(−s)
m−s = n!

m+n∑
j=0

(
m+ n

j

)
S2 (j, n)B

(n)
m+n−j (v) . (1.10)

The Apostol-Euler polynomials of order k are defined by(
2

λet + 1

)k
etx =

∞∑
m=0

E(k)m (x;λ)
tm

m!
, (1.11)

where |t| < π when λ = 1; |t| < |ln (−λ)| when λ 6= 1 and k ∈ Z (cf. [27, Eq. (1)],
[44, 45]).

When x = 0 in (1.11), we get the Apostol-Euler numbers of order k

E(k)m (0;λ) = E(k)m (λ)

(cf. [44, 45]).
One can observe that

E(1)m (x;λ) = Em (x;λ) and E(1)m (λ) = Em (λ) .
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When k = 0 in (1.11), we have

E(0)m (x;λ) = xm

and also for x = 0 in the above equation, one can easily see that

E(0)m (λ) =

{
1, m = 0
0, m ∈ N .

Substituting λ = 1 into (1.11), we have the Euler polynomials of order k

E(k)m (x; 1) = E(k)
m (x)

which are defined by means of the following generating function:(
2

et + 1

)k
etx =

∞∑
m=0

E(k)
m (x)

tm

m!
(1.12)

(cf. [44, 45]).
Setting x = 0 in (1.12), we have

E(k)
m (0) = E(k)

m

which E
(k)
m denote the Euler numbers of order k (cf. [28, 44, 45]).

Using (1.9) and (1.12), for x = 0, we have

B(−r)
m = 2−m

m∑
s=0

(
m

s

)
B(−r)
s E

(−r)
m−s (1.13)

(cf. [17, Eq. (3.1)]).
The λ-Stirling numbers of the second kind are defined by

(λet − 1)
v

v!
=

∞∑
m=0

S2 (m, v;λ)
tm

m!
, (1.14)

where v ∈ N0 and λ ∈ C (cf. [29, 36, 44, 45]).
Taking λ = 1 in (1.14), we have

S2 (m, v; 1) = S2 (m, v) .

The numbers S2 (m, v;λ) are also defined by as follows:

λxxm =

∞∑
v=0

(
x

v

)
v!S2 (m, v;λ) , (1.15)

(cf. [29, Eq. (98)]; see also [36, 44, 45]).
From (1.14), we have the following explicit formula for the numbers S2 (m, v;λ):

S2 (m, v;λ) =
1

v!

v∑
j=0

(−1)
j

(
v

j

)
λv−j (v − j)m ,

where v,m ∈ N0 and λ ∈ C (cf. [29, 36, 44, 45]).
It also should be noted that

S2 (m, v;λ) = (−1)vy1 (m, v;−λ) (1.16)

(cf. [19]).
By using (1.8) and (1.14), we have

B(−r)m (λ) =

(
m+ r

r

)−1
S2 (m+ r, r;λ) , (1.17)
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where m, r ∈ N (cf. [44, Eq. (7.16)]).
Putting λ = 1 in (1.17), we also have

B(−r)
m =

(
m+ r

r

)−1
S2 (m+ r, r) (1.18)

(cf. [44, Eq. (7.17)]).
The Bell polynomials are defined by

e(e
t−1)x =

∞∑
m=0

Blm (x)
tm

m!
, (1.19)

(cf. [2, 3]).
Combining (1.19) with (1.7), we have the following formula:

Blm (x) =

m∑
j=0

S2 (m, j)xj (1.20)

(cf. [2, 3]).
The Legendre polynomials are defined by

1√
1− 2xt+ t2

=

∞∑
m=0

Pm (x) tm

(cf. [3]).
The polynomials Pm (x) are computed by the following sum of power of binomial

coefficients:

Pm (x) =
1

2m

m∑
j=0

(
m

j

)2

(x− 1)
m−j

(x+ 1)
j

(1.21)

(cf. [3]).
The Fubini type polynomials of order v are defined by

2v

(2− et)2v
ext =

∞∑
m=0

a(v)m (x)
tm

m!
, (1.22)

where v ∈ N0 and |t| < ln 2 (cf. [14]; see also [15, 16]).
When x = 0 in (1.22), we get the Fubini type numbers of order v

a(v)m (0) = a(v)m

(cf. [14]; see also [15, 16]).
The numbers y2 (m, v;λ) are defined by(

λet + λ−1e−t + 2
)v

(2v)!
=

∞∑
m=0

y2 (m, v;λ)
tm

m!
, (1.23)

where v ∈ N0 and λ ∈ C (cf. [37]).
From (1.23), we have

y2 (m, v;λ) =
1

(2v)!

v∑
j=0

(
v

j

)
2v−j

j∑
r=0

(
j

r

)
(2r − j)m λ2r−j ,

where m, v ∈ N (cf. [37, Eq. (17)]).
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The numbers y3 (m, v;λ; a, b) are defined by

evbt

v!

(
λe(a−b)t + 1

)v
=

∞∑
m=0

y3 (m, v;λ; a, b)
tm

m!
, (1.24)

where a, b ∈ R, v ∈ N0 and λ ∈ C (or R) (cf. [39, Eq. (1)]).
With the help of (1.24), we have

y3 (m, v;λ; a, b) =
1

v!

v∑
j=0

(
v

j

)
λj (bv + j (a− b))m

(cf. [37, Theorem 3.1]).
The combinatorial-type numbers Vm (λ) are defined by

1− λ+

√
(λ− 1)

2
+ 8λ2t

2λ2t
=
∞∑
m=0

Vm (λ) tm,

where 0 <
∣∣∣ λ2t
(λ−1)2

∣∣∣ ≤ 1
8 (cf. [25]).

The rest of this paper is briefly organized as follows:
In Section 2, by using generating functions with functional equation methods,

many identities containing the Apostol-Bernoulli and Apostol-Euler numbers of
negative higher order, the Bernoulli and Euler numbers of negative higher order,
the Bell polynomials, the Fubini type polynomials of higher order, the Stirling type
numbers, and the combinatorial type numbers and polynomials are derived.

In Section 3, with the help of an asymptotic expression of sums of powers of
binomial coefficients, some formulas for the numbers y6 (m,n;λ, p) are given.

In Section 4, we give some results and remarks on the inequalities including
binomial coefficients and the numbers y6(m,n;λ, p).

In Section 5, we give the conclusion section of this paper.

2. Relations for the numbers y6 (m,n;λ, p) and certain special numbers
and polynomials

In this section, we give some relations and identities involving the Apostol-
Bernoulli and Apostol-Euler numbers of negative higher order, the Bernoulli and
Euler numbers of negative higher order, the Bell polynomials, the Stirling numbers
of the second kind, the λ-Stirling numbers, the Fubini type polynomials of higher or-
der, the numbers y1 (m, v;λ), the numbers y2 (m, v;λ), the numbers y3 (m, v;λ; a, b)
and the numbers y6 (m,n;λ, p). We also investigate some special cases of these re-
sults.

Theorem 2.1. Let m,n, p ∈ N0 with m ≥ n. Then we have

y6 (m,n;λ, p) =
1

n!

n∑
k=0

k∑
j=0

(
n

k

)p(
k

j

)
{m}j B

(−j)
m−j (λ) . (2.1)

Proof. By using (1.1), we have

∞∑
m=0

y6 (m,n;λ, p)
tm

m!
=

1

n!

n∑
k=0

(
n

k

)p k∑
j=0

(
k

j

)(
λet − 1

)j
.
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Combining the above equation with (1.8), we get

∞∑
m=0

y6 (m,n;λ, p)
tm

m!
=

1

n!

n∑
k=0

(
n

k

)p k∑
j=0

(
k

j

) ∞∑
m=0

B(−j)m (λ)
tm+j

m!
.

Therefore,

∞∑
m=0

y6 (m,n;λ, p)
tm

m!
=

1

n!

∞∑
m=0

n∑
k=0

k∑
j=0

(
n

k

)p(
k

j

)
{m}j B

(−j)
m−j (λ)

tm

m!
.

Comparing the coefficients of tm

m! on both sides of the above equation, we arrive at
the desired result. �

Combining (2.1) with (1.17), we have the following corollary:

Corollary 2.2. Let m,n, p ∈ N0. Then we have

y6 (m,n;λ, p) =
1

n!

n∑
k=0

k∑
j=0

(
n

k

)p
{k}j S2 (m, j;λ) .

Remark. Substituting x = k, k ∈ N0 into (1.15) and combining the final equation
with (1.2), we also arrive at the Corollary 2.2.

Theorem 2.3. Let m,n, p ∈ N0 with m ≥ n. Then we have

y6 (m,n;λ, p) =
1

n!

n∑
k=0

k∑
j=0

(
n

k

)p(
k

j

)
λk {m}j B

(−j)
m−j . (2.2)

Proof. Using (1.1), we have

∞∑
m=0

y6 (m,n;λ, p)
tm

m!
=

1

n!

n∑
k=0

(
n

k

)p
λk

k∑
j=0

(
k

j

)(
et − 1

)j
.

Combining the above equation with (1.9), we obtain

∞∑
m=0

y6 (m,n;λ, p)
tm

m!
=

1

n!

n∑
k=0

(
n

k

)p
λk

k∑
j=0

(
k

j

) ∞∑
m=0

{m}j B
(−j)
m−j

tm

m!
.

Comparing the coefficients of tm

m! on both sides of the above equation, we arrive at
the equation (2.2). �

Here note that combining (1.10) with Theorem 18 in [40], we also arrive at the
equation (2.2).

Remark. Combining (2.2) with (1.18), we have the following relation which was
proved by Simsek [40, Theorem 17]:

y6 (m,n;λ, p) =

n∑
k=0

k∑
j=0

(
n

k

)p−1
λkS2 (m, j)

(n− k)!(k − j)!
.

Combining (2.2) with (1.13), we obtain the following corollary:

Corollary 2.4.

y6 (m,n;λ, p) =
1

n!

n∑
k=0

k∑
j=0

m−j∑
s=0

(
n

k

)p(
k

j

)(
m− j
s

)
λk {m}j

2m−j
B(−j)
s E

(−j)
m−j−s.
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Theorem 2.5. Let m,n, p ∈ N0. Then we have

y6 (m,n;λ, p) =
1

n!

n∑
k=0

k∑
j=0

(
n

k

)p(
k

j

)
(−1)

k−j
2jE(−j)m (λ) .

Proof. By using (1.1), we have

∞∑
m=0

y6 (m,n;λ, p)
tm

m!
=

1

n!

n∑
k=0

(
n

k

)p k∑
j=0

(−1)
k−j

(
k

j

)(
λet + 1

)j
.

From the above equation and (1.11), we get

∞∑
m=0

y6 (m,n;λ, p)
tm

m!
=

1

n!

∞∑
m=0

n∑
k=0

k∑
j=0

(−1)
k−j

2j
(
n

k

)p(
k

j

)
E(−j)m (λ)

tm

m!
.

Comparing the coefficients of tm

m! on both sides of the above equation, we arrive at
the desired result. �

Theorem 2.6. Let m,n, p ∈ N0. Then we have

y6 (m,n;λ, p) =
1

n!

n∑
k=0

k∑
j=0

(−1)
k−j

(
n

k

)p(
k

j

)
λk2jE(−j)

m .

Proof. From (1.1) and (1.12), we obtain

∞∑
m=0

y6 (m,n;λ, p)
tm

m!
=

1

n!

∞∑
m=0

n∑
k=0

k∑
j=0

(−1)
k−j

(
k

j

)(
n

k

)p
λk2jE(−j)

m

tm

m!
.

Comparing the coefficients of tm

m! on both sides of the above equation, we arrive at
the desired result. �

Theorem 2.7. Let m,n, p ∈ N0. Then we have

y6 (m,n;λ, p) =
1

n!

n∑
k=0

(−λ)
k

(
n

k

)p
(2k)!

m∑
j=0

(
m

j

)
a
(k)
j (2k) y2

(
m− j, k;−1

2

)
.

Proof. Combining (1.1) with (1.22) and (1.23), and assuming |t| < ln 2, we have
∞∑
m=0

y6 (m,n;λ, p)
tm

m!
=

1

n!

n∑
k=0

(−1)
k

(
n

k

)p
λk (2k)!

∞∑
m=0

y2

(
m, k;−1

2

)
tm

m!

×
∞∑
m=0

a(k)m (2k)
tm

m!
.

Hence
∞∑
m=0

y6 (m,n;λ, p)
tm

m!
=

1

n!

n∑
k=0

(−1)
k

(
n

k

)p
λk (2k)!

×
∞∑
m=0

m∑
j=0

(
m

j

)
a
(k)
j (2k) y2

(
m− j, k;−1

2

)
tm

m!
.

Comparing the coefficients of tm

m! on both sides of the above equation, we get the
desired result. �
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Theorem 2.8. Let m,n, p ∈ N0. Then we have

y6 (m,n;λ, p) =
1

n!

n∑
k=0

(
n

k

)p
(2λ)

k
(2k)!

m∑
j=0

(
m

j

)
a
(k)
j (−k) y3

(
m− j, 2k;−1

2
; 2, 1

)
.

Proof. Using (1.1), we get

∞∑
m=0

y6 (m,n;λ, p)
tm

m!
=

1

n!

n∑
k=0

(
n

k

)p
(2λ)

k
(2k)!

(
− 1

2e
t + 1

)2k
e2kt

(2k)!

2ke−kt

(2− et)2k
.

Combining the above equation with (1.22) and (1.24), we have
∞∑
m=0

y6 (m,n;λ, p)
tm

m!
=

1

n!

n∑
k=0

(
n

k

)p
(2λ)

k
(2k)!

∞∑
m=0

y3

(
m, 2k;−1

2
; 2, 1

)
tm

m!

×
∞∑
m=0

a(k)m (−k)
tm

m!
.

Thus,
∞∑
m=0

y6 (m,n;λ, p)
tm

m!
=

1

n!

n∑
k=0

(
n

k

)p
(2λ)

k
(2k)!

×
∞∑
m=0

m∑
j=0

(
m

j

)
a
(k)
j (−k) y3

(
m− j, 2k;−1

2
; 2, 1

)
tm

m!
.

Comparing the coefficients of tm

m! on both sides of the above equation, we arrive at
the desired result. �

Theorem 2.9. Let r, n, p ∈ N0. Then we have
r∑

m=0

y6 (m,n;λ, p)S2 (r,m) =
1

n!

n∑
k=0

(
n

k

)p
λkBlr (k) . (2.3)

Proof. Replacing t by et − 1 in (1.1), we have
∞∑
m=0

y6 (m,n;λ, p)
(et − 1)

m

m!
=

1

n!

n∑
k=0

(
n

k

)p
λke(e

t−1)k.

Combining the above equation with (1.7) and (1.19), we obtain
∞∑
r=0

r∑
m=0

y6 (m,n;λ, p)S2 (r,m)
tr

r!
=

1

n!

n∑
k=0

(
n

k

)p
λk
∞∑
r=0

Blr (k)
tr

r!
.

Comparing the coefficients of tr

r! on both sides of the above equation, we arrive at
the desired result. �

Setting p = 1 in (2.3) and combining the final equation with (1.5), we get the
following corollary:

Corollary 2.10. Let r and n ∈ N0. Then we have
r∑

m=0

y1 (m,n;λ)S2 (r,m) =
1

n!

n∑
k=0

(
n

k

)
λkBlr (k) . (2.4)

Combining (2.4) with (1.16), we obtain the following relation:
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Corollary 2.11. Let r and n ∈ N0. Then we have

r∑
m=0

S2 (m,n;−λ)S2 (r,m) =
(−1)n

n!

n∑
k=0

(
n

k

)
λkBlr (k) .

Theorem 2.12. Let n ∈ N0 and λ 6= 1. Then we have

y6 (0, n;λ, 2) =
(λ− 1)

n

n!
Pn

(
λ+ 1

λ− 1

)
. (2.5)

Proof. Substituting m = 0 and p = 2 into (1.2), we get the following result:

y6 (0, n;λ, 2) =
1

n!

n∑
k=0

(
n

k

)2

λk.

Combining the above equation with (1.21), we obtain

y6 (0, n;λ, 2) =
(λ− 1)

n

n!
Pn

(
λ+ 1

λ− 1

)
.

Thus, the proof of the theorem is completed. �

Notice that the different proof of the Theorem 2.12 was also given by Simsek,
using relation between Michael Vowe polynomials and Legendre polynomials (see
for detail, [40, Remark 10 and Remark 12]).

Remark. When λ = 3 and λ = −1 in (2.5), respectively we have

y6 (0, n; 3, 2) =
2n

n!
Pn (2)

and

y6 (0, n;−1, 2) =
(−1)

n
2n

n!
Pn (0)

(cf. [40, p. 1337]).

3. Remarks on asymptotic expressions of the numbers y6 (m,n;λ, p)

In this section, we investigate asymptotic expressions of the numbers y6 (m,n;λ, p).
We present some relations related to these numbers.

For approximation we write an ∼ bn. This notation means that

lim
n→∞

an
bn

= 1 (3.1)

(cf. [33]).
By using the following Stirling’s approximation

n! ∼
√

2πn
(n
e

)n
(3.2)

(cf. [5, 34, 45]), for n→∞ and k →∞, approximation of
(
n
k

)
is given by as follows:(

n

k

)
∼ nn

kk (n− k)
n−k

√
n

2πk (n− k)
(3.3)

(cf. [43]).
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By using (3.2), Polya and Szego [33, Problem 40, p. 55] gave an asymptotic
expression of the finite sum of powers of binomial coefficients as follows:

n∑
k=0

(
n

k

)p
∼ 2pn
√
p

(
2

πn

) p−1
2

. (3.4)

It’s time to give some relations involving the numbers y6 (m,n;λ, p) with the
help of the asymptotic formulas of the finite sum of powers of binomial coefficients
given in the above equations.

Theorem 3.1. Let n, p ∈ N. Then we have

y6 (0, n; 1, p) ∼ 2pn−1
√
p

( e
n

)n( 2

πn

) p
2

. (3.5)

Proof. Substituting λ = 1 and m = 0 into (1.2), we get

y6 (0, n; 1, p) =
1

n!

n∑
k=0

(
n

k

)p
. (3.6)

By combining (3.6) with (3.4) and (3.2), after some elementary calculations, we
obtain

√
p lim
n→∞

√
2πn

(
n
e

)n
y6 (0, n; 1, p)

2pn
(

2
πn

) p−1
2

= 1.

Assuming that 2pn√
2πn(n

e )
n√

p

(
2
πn

) p−1
2 6= 0. Consequently, y6 (0, n; 1, p) is an asymp-

totically equal to 2pn√
2πn(n

e )
n√

p

(
2
πn

) p−1
2 . That is,

y6 (0, n; 1, p) ∼ 2pn−1
√
p

( e
n

)n( 2

πn

) p
2

.

Therefore, proof of theorem is completed. �

Remark. Kucukoglu and Simsek, with the help of the Stirling’s approximation,
gave interesting and useful asymptotic formulas including combinatorial numbers
(see, for detail, [22, 23]; and also [26]).

We now give some special cases involving three equations for the numbers y6 (m,n;λ, p).
Putting p = 1, λ = 1 and m = 0 in (1.2), and using (1.3), we have

y6 (0, n; 1, 1) =
2n

n!
. (3.7)

When p = 1 in (3.5), we get

y6 (0, n; 1, 1) ∼ 2n−
1
2

√
nπ

( e
n

)n
. (3.8)

From the equations (3.7) and (3.8), some values of the numbers y6 (0, n; 1, 1) are
given by Table 1:
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n y6 (0, n; 1, 1) Approximate values of y6 (0, n; 1, 1)

1 2 2.16888

2 2 2.08441

3 1.33333 1.37075

4 0.666667 0.680672

5 0.266667 0.271142

6 0.0888889 0.0901309

600 3.27877 . 10−1228 3.27922 . 10−1228

6000 5.63886 . 10−18260 5.63894 . 10−18260

60000 4.03148 . 10−242573 4.03149 . 10−242573

Table 1. Some numeric and approximate values of the numbers y6 (0, n; 1, 1).

When p = 2, λ = 1 and m = 0 in (1.2), then using (1.4), we obtain

y6 (0, n; 1, 2) =
(2n)!

(n!)3
. (3.9)

Using (3.5), for p = 2, we have

y6 (0, n; 1, 2) ∼ en22n−
1
2

πnn+1
. (3.10)

By using equations (3.9) and (3.10), some values of the numbers y6 (0, n; 1, 2) are
given by Table 2:

n y6 (0, n; 1, 2) Approximate values of y6 (0, n; 1, 2)

1 2 2.44731

2 3 3.32624

3 3.33333 3.57202

4 2.91667 3.07223

5 2.1 2.18921

6 1.28333 1.32863

600 3.13305 . 10−1049 3.13413 . 10−1049

6000 6.21593 . 10−16456 6.21614 . 10−16456

60000 5.85535 . 10−224514 5.85538 . 10−224514

Table 2. Some numeric and approximate values of the numbers y6 (0, n; 1, 2).

It can be easily seen in Table 2 that when n → ∞, ratio of the first column to
the second column converges to 1 due to the asymptotic equality.

When p = 3 in (3.5), we have the following asymptotic expression:

y6 (0, n; 1, 3) ∼ 23n+1

√
6

( e
n

)n( 1

πn

) 3
2

.
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Thus, some values of the numbers y6 (0, n; 1, 3) are given by Table 3:

n y6 (0, n; 1, 3) Approximate values of y6 (0, n; 1, 3)

1 2 3.1887

2 5 6.12905

3 9.33333 10.7482

4 14.4167 16.0117

5 18.7667 20.4102

6 21.0889 22.6153

600 3.45647 . 10−870 3.45887 . 10−870

6000 7.91195 . 10−14652 7.91250 . 10−14652

60000 9.81997 . 10−206455 9.82004 . 10−206455

Table 3. Some numeric and approximate values of the numbers y6 (0, n; 1, 3).

4. Further results and remarks on the inequalities involving the
numbers y6(m,n;λ, p)

In this section, we give both the upper bound and the lower bound for the
numbers y6 (m,n;λ, p) with the help of the binomial coefficients.

The binomial coefficient is related to the following inequalities

nk

kk
≤
(
n

k

)
≤ nk

k!
, (4.1)

where 1 ≤ k ≤ n (cf. [4, 43]).
By replacing n by 2n and k by n in (4.1), we have

2n ≤
(

2n

n

)
(4.2)

and
2nnn

n!
≥
(

2n

n

)
. (4.3)

Combining (1.4) with (4.2) and (4.3), we have the following result including the
lower and upper bound for the numbers y6 (0, n; 1, 2):

Corollary 4.1. Let n ∈ N. Then we have

2n

n!
≤ y6 (0, n; 1, 2) ≤ 2nnn

(n!)
2 . (4.4)

In [23, Eq. (6.7)], Kucukoglu and Simsek gave the following relation for the
numbers y6 (0, n; 1, 2):

Vn (λ) =
(−1)

n
2n+1λ2nn!

(n+ 1) (λ− 1)
2n+1 y6 (0, n; 1, 2) , (4.5)

where λ 6= 1 and n ∈ N. They also gave the lower and upper bound for the numbers
Vn (λ) as follows:

(−1)
n

23nλ2n

(n+ 1)
√
n (λ− 1)

2n+1 ≤ Vn (λ) ≤ (−1)
n

23n+1λ2n

(n+ 1) (λ− 1)
2n+1 , (4.6)
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where λ 6= 1 and n ∈ N (cf. [23, Eq. (6.35)]).
Combining (4.5) with (4.6), we also obtain the following inequalities for the

numbers y6 (0, n; 1, 2):

Corollary 4.2. Let n ∈ N. Then we have

22n−1

n!
√
n
≤ y6 (0, n; 1, 2) ≤ 22n

n!
. (4.7)

Remark. Which of the inequalities given in (4.4) and (4.7) is more sharper can
be investigated using different methods.

Let x ∈ [−1, 1] and n ∈ N. In [30], Martin gave the following inequality for the
Legendre polynomials Pn (x):

|Pn (x)| ≤ 1

(1 + n (n+ 1) (1− x2))
1
4

. (4.8)

Using (4.8), we have∣∣∣∣Pn(λ+ 1

λ− 1

)∣∣∣∣ ≤ 1(
1 + n (n+ 1)

(
1−

(
λ+1
λ−1

)2)) 1
4

,

where λ+1
λ−1 ∈ [−1, 1] and n ∈ N. Combining the above equation with (2.5), we

obtain the following inequality for the numbers y6 (0, n;λ, 2):

Corollary 4.3. Let n ∈ N and λ+1
λ−1 ∈ [−1, 1]. Then we have∣∣∣∣n!y6 (0, n;λ, 2)

(λ− 1)
n

∣∣∣∣ ≤ 1(
1 + n (n+ 1)

(
1−

(
λ+1
λ−1

)2)) 1
4

.

5. Conclusion

In this paper, some special numbers and polynomials, including finite sums of
powers of binomial coefficients, were studied. Using generating functions for these
numbers, some formulas involving the Apostol-Bernoulli and Apostol-Euler num-
bers of negative higher order, the Bernoulli and Euler numbers, the Stirling type
numbers, the combinatorial numbers, the Bell polynomials, the Fubini type poly-
nomials, and the Legendre polynomials were given. Further, some asymptotic ex-
pressions of the finite sums of powers of binomial coefficients and their numeric
values for these numbers were presented. We also obtained some inequalities for
these numbers. Consequently, the results of this paper have the potential to be
considerable attention of many researchers such as mathematicians, physicists and
engineers.
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