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A SIMPLE AND EFFICIENT APPROACH BASED ON

LAGUERRE POLYNOMIALS FOR SOLVING SCHLÖMILCH’S

INTEGRAL EQUATION

AHMET ALTÜRK

Abstract. The Schlömilch’s integral equation plays an important role in

many ionospheric problems and is considered as an important and useful equa-
tion in atmospheric and terrestrial physics. The equation is classified as a

Fredholm integral equation of the first kind. This classification enables us

to use and employ the tools available for solving Fredholm equations of the
first kind. The motivation behind this work is to develop an efficient method

that based on the regularization method and Laguerre polynomials for solving

various types of Schlömilch’s integral equations.

1. Introduction

The subject of integral equations is one of the most important tools in mathe-
matics. It has attracted the attention of many researchers due mainly to the fact
that integral equations appear in many mathematical and physical models. Thus,
constructing methods for obtaining analytical and numerical solutions of them have
always been an active research field.

The Schlömilch’s integral equation and it’s solution have been used to obtain
the electron density profile from the ionospheric ionograms for the case of quasi-
transverse approximation. We will focus here more on mathematical aspect of the
equation and its solutions. For more detailed explanation about physical aspect of
the equation and its applications in engineering we refer the interested readers to
[3, 4, 5, 6, 7, 8] and references therein.

We want to point out that the theoretical investigation of ionospheric problems,
in particular the Schlömilch’s integral equation, has been studied extensively in
comparison to computational aspects of them, some of which have been mentioned
below. To contribute to the latter, we aim to provide a simple and efficient algo-
rithm that based on the regularization and Laguerre polynomials to solve different
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types of Schlömilch’s integral equation.

The main equation that we consider here, namely the standard linear Schlömilch’s
integral equation, has the following form:

y(x) =
2

π

∫ π/2

0

φ(x sin θ) dθ, −π ≤ x ≤ π, (1.1)

where y(x) is a continuous differential function on [−π, π]. A known solution to
this equation reads

φ(x) = y(0) + x

∫ π/2

0

y′(x sin θ) dθ,

where the derivative y′ is taken with respect to the argument x sin θ.

As it was emphasized in [9, 10], the Adomian decomposition method [1, 2] (ADM)
cannot be applied directly to (1.1). To apply the ADM or any method that will
be based on writing the solution in a series form should be adjusted properly so
that the components of the solution completely determined recurrently or finding a
relation that eventually produces the solution. Our motivation for this article is to
introduce a method that based on a series and provides the exact solution. In what
follows, we present some of the studies that make several noteworthy contributions
to the literature on the Schlömilch’s integral equation.

Bougoffa et al.[10] presented a new technique that extends application of the
Adomian decomposition method in the sense that it can be applied to Fredholm
integral equations of the first kind including Schlömilch’s integral equations and
a class of related integral equations of the first kind. The introduced method ex-
tends the applicability of the ADM. To develop the technique, the authors add the
solution φ(x) to the both sides of the equation (1.1) and apply the ADM to the
resulting equation. This new technique is easy to apply and yields very accurate
results.

Wazwaz [11] used the regularization method combined with the ADM to solve
various kinds of Schlömilch’s integral equations. As we point out above, in or-
der to use the ADM one needs to transform the equation (1.1) into a form that
the unknown function appears outside of the integral as well. Wazwaz overcome
this issue by applying the regularization method which will be discussed in the next
section. In addition, he introduced and solved Schlömilch’s-type integral equations.

Altürk [12] reveals the relation between solutions of the linear and nonlinear
Schlömilch’s integral equations and the well known gamma function. Altürk and
Arabacıoğlu [13] intoduced a method based on the homotopy perturbation method
to find solutions for various types of Schlömilch’s integral equations. The method
involves additional term to the standard convex homotopy so as to obtain an effi-
cient algorithm.

Parand and Delkhosh [14] introduced a new numerical method based on the
Chebyshev functions. To be more precise, they construct approximate solutions
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for linear and nonlinear Schlömilch’s integral equations by using the generalized
fractional order of the Chebyshev orthogonal functions.

Al-Jawary et al.[15] used the regularization method combined with the homo-
topy analysis method (HAM) and variational iteration method(VIM). To show the
usefulness in finding the exact solutions, their implementation of aforementioned
methods supported by several illustrative examples.

In addition to the standard Schlömilch’s equation (1.1), there are two other types
of Schlömilch’s equations that will be considered in this work. One is the generalized
Schlömilch’s integral equation

y(x) =
2

π

∫ π/2

0

φ(x sinn θ) dθ, n ≥ 1.

and the other one is the nonlinear Schlömilch’s integral equation

y(x) =
2

π

∫ π/2

0

G
(
φ(x sin θ)

)
dθ,

where G
(
φ(x sin θ)

)
is a nonlinear function of φ and y is a continuous differential

function on −π ≤ x ≤ π.
The rest of the article has been organized in the following way. The first section

will examine the method of regularization briefly and state the main results that
will be used in later sections. Then, basic properties of Laguerre polynomials are
reviewed. The main section consists of method for solution of the Schlömilch’s
integral equations on a case by case basis. The detail is given in the first case
which covers the basic linear Schlömilch’s integral equation. For the rest, we will
only emphasize the differences from the first case. Final section concludes the
article.

2. The Regularization method

The regularization method was introduced by Philips [16], Lavrentiev[17], and
Tikhonov [18, 19]. In this work, we will mainly focus on and employ the regular-
ization method proposed by Lavrentiev. He introduced a regularization method to
solve first kind integral equations with some mild restrictions on the kernel. Assume
that a solution exists to the following ill-posed problem:

y(x) =

∫ b

a

k(x, t)φ(t) dt, a ≤ x ≤ b.

One can modify this equation by introducing a term that includes the regularization
parameter γ as

y(x) =

∫ b

a

k(x, t)φ(t) dt+ γφ(x) (2.1)

The equation (2.1) is a Fredholm integral equation of the second kind and if we
denote its solution by φγ(x) and substitute into the equation (2.1) we get

γφγ(x) = y(x)−
∫ b

a

k(x, t)φγ(t) dt,

Equivalently,

φγ(x) =
1

γ
y(x)− 1

γ

∫ b

a

k(x, t)φγ(t) dt.
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Now, it is an easy exercise to obtain φγ(x).

Under certain conditions, it is shown in [16, 18, 19] that

φ(x) = lim
γ→0

φγ(x)

3. Laguerre Polynomials

In this section, we give a brief review of the Laguerre polynomials and their
properties that are needed for what follows. We note that there are different but
equivalent ways to define Laguerre polynomials. Each has its own advantageous and
disadvantageous for a practical application. Particular application will determine
which approach is used as one’s starting point. A few important properties which
will be used throughout the article is listed below. For more information, we refer
the reader to Arfgen and Weber [20].
A few Laguerre polynomial and the recursion relation is given below.

L0(x) = 1,

L1(x) = 1− x,

L2(x) = 1− 2x+
x2

2
,

...

Ln+1(x) =
1 + 2n− x
n+ 1

Ln(x)− n

n+ 1
Ln−1(x), n ≥ 1.

They form an orthonormal set of functions with weighting function e−x in the
interval [0,∞) : ∫ ∞

0

e−xLm(x)Ln(x) dx =

{
1 m = n
0 m 6= n

4. Method for Solution

In order to find the solutions for the equations considered, we first apply the
regularization method to bring them into such a form that there are more tech-
niques to solve them, namely, bring them into the second kind integral equations.
We then express the regularized solution function by the truncated Laguerre series.
Finally, a matrix equation will be obtained and solution of that will lead us to get
the desired solution.

Case 1: The Linear Schlömilch’s Integral Equation
The standard linear Schlömilch’s integral equation has the following form:

y(x) =
2

π

∫ π/2

0

φ(x sin θ) dθ, −π ≤ x ≤ π.

Applying the regularization method described above brings the equation into

γφγ(x) = y(x)− 2

π

∫ π/2

0

φγ(x sin θ) dθ

or

φγ(x) =
1

γ
y(x)− 2

γπ

∫ π/2

0

φγ(x sin θ) dθ (4.1)
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Let y(x) and φγ(x) be approximated by truncated Laguerre series as

y(x) =

n∑
i=0

yiLi(x)

φγ(x) =

n∑
i=0

ciLi(x)

(4.2)

Notation:

X = [1, x, x2 . . . , xn], C = [c0, c1, c2 . . . , cn]T , Y = [y0, y1, y2 . . . , yn]T

(4.3)

Q =



1 1 1 . . . 1
0 −1 −2 . . . −n
...

...
. . . . . .

...

0 0 0
. . .

(
n
n−1
) (−1)n−1

(n−1)!
0 0 0 . . . (−1)n

n!

 S =



1 0 0 . . . 0
0 sin(θ) 0 . . . 0
...

...
. . . . . .

...
...

...
. . . . . .

...
0 0 0 0 sinn(θ)


With the help of this notation, the equation (4.1) can be expressed as

XQC = XQỸ −XS̃QC, (4.4)

where

S̃ =
2

γπ

∫ π/2

0

S dθ and Ỹ =
1

γ
Y

Using the fact that Q is invertible, rearranging the terms in (4.4) and then simpli-
fying the resulting equation, we end up with

(I + Q−1S̃Q)C = Ỹ,

where I is the identity matrix.
If the matrix I + Q−1S̃Q is invertible, then

C = (I + Q−1S̃Q)−1Ỹ. (4.5)

Substituting the coefficients ci back into the equation (4.2), we get the solution
φγ(x). The desired solution φ(x) is obtained by taking the limit of φγ(x) as γ → 0.

We want to emphasize that in many applications and examples in the litera-
ture the data function y in (1.1) appears as a polynomial function. The following
theorem will be useful for the examples considered here.

Theorem 4.1. [12] The data function y in (1.1) is a polynomial function of degree
n if and only if the solution function φ of (1.1) is a polynomial function of the
same degree

Before delving into the examples, we want to make a couple of remarks here:

Remark. A well-known feature related to Fredholm integral equations of the first
kind is that they are considered as ”ill-posed” problems. This property indicates that
a solution of the problem may not exist, or if it exists uniqueness and continuous
dependence on the data are not guaranteed [19]. It is also this property that makes
it difficult to find analytical solutions for the equation.
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Remark. We don’t claim for complete generality about the data function, but in-
troduce a method that could be used to find the analytical solution under the mild
conditions imposed on the data function and is comparable with existing techniques
in the literature from which examples are mostly taken. In addition, a recent review
paper [21] is recommended for those who are interested in an overview of numerical
solutions for Fredholm integral equations of the first kind.

Example 4.1. Given the following Fredholm integral equation of the first kind
[11, 15]:

y(x) =
2

π

∫ π/2

0

φ(x sin θ) dθ, −π ≤ x ≤ π, (4.6)

where y(x) = 1 + πx2.

We first apply the regularization method to transform the equation into a second
kind equation. Applying the regularization method, (4.6) becomes

γφγ(x) = 1 + πx2 − 2

π

∫ π/2

0

φγ(x sin θ) dθ

or

φγ(x) =
1

γ
(1 + πx2)− 2

γπ

∫ π/2

0

φγ(x sin θ) dθ

Since we seek the solution φγ(x) =

n∑
i=0

ciLi(x) in a truncated Laguerre series form,

we set n = 2. Following the steps explained above, we obtain

C = [c0, c1, c2]T

Y = [y0, y1, y2]T = [2π + 1, −4π, 2π]T

Q =

1 1 1
0 −1 −2
0 0 1

2

 Q−1 =

1 1 2
0 −1 −4
0 0 2


S =

1 0 0
0 sin(θ) 0
0 0 sin2(θ)


Substituting these into the equation (4.5), we get

c0 =
2α(2π + 1) + 4π + 1

2α2 + 3α+ 1
,

c1 =
−8π

2α+ 1
,

c2 =
4π

2α+ 1
.
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This in turn gives the regularized solution

φγ(x) =
2γ(2π + 1) + 4π + 1

2γ2 + 3γ + 1
L0(x) +

−8π

2γ + 1
L1(x) +

4π

2γ + 1
L2(x)

=
2γ(2π + 1) + 4π + 1

2γ2 + 3γ + 1
+
−8π

2γ + 1
(1− x) +

4π

2γ + 1
(1− 2x+ x2/2)

=
2γ + 1

2γ2 + 3γ + 1
+

2π

2γ + 1
x2

As the last step to obtain the desired solution φ(x), we take the limit as γ → 0:

φ(x) = lim
γ→0

φγ(x) = lim
γ→0

( 2γ + 1

2γ2 + 3γ + 1
+

2π

2γ + 1
x2
)

= 1 + 2πx2

This is the exact solution which is also derived in [11, 15].

Remark. We want to make a note here that sometimes the equation to be consid-
ered appeared in the form

y(x) =
2

π

∫ π/2

0

φ(x sin(kθ)) dθ, −π ≤ x ≤ π,

where k is a constant.

The procedure to solve this types of problems is almost the same as that of Case
1. The only difference is that one needs to modify S in (4.3) as

Sk =



1 0 0 . . . 0
0 sin(kθ) 0 . . . 0
...

...
. . . . . .

...
...

...
. . . . . .

...
0 0 0 0 sinn(kθ)


and replace S with Sk wherever it appears. In other words, with the help of this
notation, the equation (4.4) can be expressed as

XQC = XQỸ −XS̃kQC, (4.7)

where

S̃k =
2

γπ

∫ π/2

0

Sk dθ and Ỹ =
1

γ
Y

Using the fact that Q is invertible, rearranging the terms in (4.7) and then simpli-
fying the resulting equation, we end up with

(I + Q−1S̃kQ)C = Ỹ,

where I is the identity matrix.
If the matrix I + Q−1S̃kQ is invertible, then

C = (I + Q−1S̃kQ)−1Ỹ. (4.8)

To illustrate this case, we consider the following example.
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Example 4.2. Given the following Fredholm integral equation of the first kind [11]:

y(x) =
2

π

∫ π/2

0

φ(x sin 3θ) dθ, −π ≤ x ≤ π, (4.9)

where y(x) = 2x.

We first apply the regularization method to transform the equation into a second
kind equation. Applying the regularization method, (4.9) becomes

γφγ(x) = 2x− 2

π

∫ π/2

0

φγ(x sin 3θ) dθ

or

φγ(x) =
1

γ
(2x)− 2

γπ

∫ π/2

0

uγ(x sin t) dt

Since we seek the solution φγ(x) =
n∑
i=0

ciLi(x) in a truncated Laguerre series form,

we set n = 1. This implies

C = [c0, c1]T

Y = [y0, y1]T = [2, −2]T

Q =

(
1 1
0 −1

)
Q−1 =

(
1 1
0 −1

)
S3 =

(
1 0
0 sin(3θ)

)
Substituting these into the equation (4.8), we get

c0 =
6π

3απ + 2
,

c1 =
−6π

3απ + 2
.

This in turn gives the solution

φγ(x) =
6π

3γπ + 2
L0(x)− 6π

3γπ + 2
L1(x)

=
6π

3γπ + 2
− 6π

3γπ + 2
(1− x)

=
6π

3γπ + 2
x

As the last step to obtain the desired solution φ(x), we take the limit as γ → 0:

φ(x) = lim
γ→0

φγ(x) = lim
γ→0

( 6π

3γπ + 2
x)

= 3πx

This is the exact solution which is also derived in [11].



A SIMPLE AND EFFICIENT APPROACH BASED ON LAGUERRE POLYNOMIALS 45

Case 2: The Generalised Schlömilch’s Integral Equation

The generalized Schlömilch’s integral equation admits the following form:

y(x) =
2

π

∫ π/2

0

φ(x sink θ) dθ, x ∈ Ω, (4.10)

where Ω is a closed and bounded domain of x. The regularization method is em-
ployed to the equation (4.10) to get

γφγ(x) = y(x)− 2

π

∫ π/2

0

uγ(x sink θ) dθ

or

φγ(x) =
1

γ
y(x)− 2

γπ

∫ π/2

0

uγ(x sink θ) dθ

Let y(x) and φγ(x) be approximated by truncated Laguerre series as before

y(x) =

n∑
i=0

yiLi(x)

φγ(x) =

n∑
i=0

ciLi(x)

The solution follows from the steps explained in Case 1 with a small modification
in S.

Sk =



1 0 0 . . . 0

0 sink(θ) 0 . . . 0
...

...
. . . . . .

...
...

...
. . . . . .

...

0 0 0 0 sinnk(θ)


That is, S will be replaced with Sk wherever it appears.

Example 4.3. Given the following Fredholm integral equation of the first kind
[11, 15]:

y(x) =
2

π

∫ π/2

0

φ(x sin2 θ) dθ, −π ≤ x ≤ π, (4.11)

where y(x) = x+ 3x2.

We first apply the regularization method to transform the equation into a second
kind equation. Applying the regularization method, (4.11) becomes

γyγ(x) = x+ 3x2 − 2

π

∫ π/2

0

φγ(x sin2 θ) dθ

or

φγ(x) =
1

γ
(x+ 3x2)− 2

γπ

∫ π/2

0

φγ(x sin2 θ) dθ
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Since we seek the solution φγ(x) =

n∑
i=0

ciLi(x) in a truncated Laguerre series form,

k = 2 and we set n = 2. This implies

C = [c0, c1, c2]T

Y = [y0, y1, y2]T = [7, −13, 6]T

Q =

1 1 1
0 −1 −2
0 0 1

2

 Q−1 =

1 1 2
0 −1 −4
0 0 2


S2 =

1 0 0
0 sin2(θ) 0
0 0 sin4(θ)


Substituting these into the equation (4.8) with S replaced with S2 so that means

S̃ is replaced with S̃2, we get

c0 =
2(56α+ 27)

16α2 + 14α+ 3
,

c1 =
−2(104α+ 51)

16α2 + 14α+ 3
,

c2 =
48

8α+ 3
.

This in turn gives the regularized solution

φγ(x) =
2(56γ + 27)

16γ2 + 14γ + 3
L0(x) +

−2(104γ + 51)

16γ2 + 14γ + 3
L1(x) +

48

8γ + 3
L2(x)

=
2(56γ + 27)

16γ2 + 14γ + 3
+
−2(104γ + 51)

16γ2 + 14γ + 3
(1− x) +

48

8γ + 3
(1− 2x+ x2/2)

=
16γ + 6

16γ2 + 14γ + 3
x+

24

8γ + 3
x2

As the last step to obtain the desired solution u(x), we take the limit as γ → 0:

φ(x) = lim
γ→0

φγ(x) = lim
γ→0

( 16γ + 6

16γ2 + 14γ + 3
x+

24

8γ + 3
x2)

= 2x+ 8x2

Case 3: The Nonlinear Schlömilch’s Integral Equation
We consider the nonlinear Schlömilch’s integral equation which has the following
form:

y(x) =
2

π

∫ π/2

0

G(φ(x sin θ)) dθ, −π ≤ x ≤ π, (4.12)

where G(φ(x sin θ)) is a nonlinear function of φ(x sin θ).

We assume that G is invertible so that letting that G(φ(x sin θ)) = z(x sin θ) will
imply that

φ(x sin θ) = G−1(z(x sin θ)).



A SIMPLE AND EFFICIENT APPROACH BASED ON LAGUERRE POLYNOMIALS 47

Thus, with this transformation, (4.12) becomes

y(x) =
2

π

∫ π/2

0

z(x sin θ) dθ,

which is equivalent to (1.1). We solve this equation for z(x) and then use the inverse
transform G−1 to get φ(x).

Example 4.4. Given the following Fredholm integral equation of the first kind
[11, 15]:

y(x) =
2

π

∫ π/2

0

φ2(x sin θ) dθ,

where y(x) = 5x6.

We first apply the transformation z = φ2 to convert the equation into

y(x) =
2

π

∫ π/2

0

z(x sin θ) dθ. (4.13)

Employing the regularization method, (4.13) becomes

γzγ(x) = 5x6 − 2

π

∫ π/2

0

zγ(x sin θ) dθ

or

zγ(x) =
1

γ
(5x6)− 2

γπ

∫ π/2

0

zγ(x sin θ) dθ
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Since we seek the solution zγ(x) =

n∑
i=0

ciLi(x) in a truncated Laguerre series form,

we set n = 6. This implies

C = [c0, c1, c2, c3, c4, c5, c6]T

Y = [y0, y1, y2, y3, y4, y5, y6]T = [3600, −21600, 54000, −72000, 54000, −21600, 3600]T

Q =



1 1 1 1 1 1 1
0 −1 −2 −3 −4 −5 −6
0 0 1/2 3/2 3 5 15/2
0 0 0 −1/6 −2/3 −5/3 −10/3
0 0 0 0 1/24 5/24 5/8
0 0 0 0 0 −1/120 −1/20
0 0 0 0 0 0 1/720



Q−1 =



1 1 2 6 24 120 720
0 −1 −4 −18 −96 −600 −4320
0 0 2 18 144 1200 10800
0 0 0 −6 −96 −1200 −14400
0 0 0 0 24 600 10800
0 0 0 0 0 −120 −4320
0 0 0 0 0 0 720



S =



1 0 0 0 0 0 0
0 sin θ 0 0 0 0 0
0 0 sin2 θ 0 0 0 0
0 0 0 sin3 θ 0 0 0
0 0 0 0 sin4 θ 0 0
0 0 0 0 0 sin5 θ 0
0 0 0 0 0 0 sin6 θ


Substituting these into the equation (4.5), we get

c0 = c6 =
57600

(16γ + 5)
,

c1 = c5 = − 345600

(16γ + 5)
,

c2 = c4 =
864000

(16γ + 5)
,

c3 = − 1152000

(16γ + 5)
·

This in turn gives the regularized solution

zγ(x) =
57600

(16γ + 5)
L0(x)− 345600

(16γ + 5)
L1(x) +

864000

(16γ + 5)
L2(x)

− 1152000

(16γ + 5)
L3(x) +

864000

(16γ + 5)
L4(x)− 345600

(16γ + 5)
L5(x) +

57600

(16γ + 5)
L6(x)

=
57600

720(16γ + 5)
x6
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As the last step to obtain the desired solution φ(x), we take the limit as γ → 0:

z(x) = lim
γ→0

zγ(x) = lim
γ→0

57600

720(16γ + 5)
x6

= 16x6

Since z = φ2, then φ(x) = ±4x3.

5. Conclusion

In this work, we proposed a new method which is based on a combination of the
regularization method and Laguerre polynomials. It is an efficient way for deriving
exact solutions of Schlömilch’s integral equations of different kinds. The proposed
algorithm is easy to apply and removes all unnecessary mathematical calculations
that appear in application of other methods. In addition, examples which are taken
from the literature for comparison are given to show applicability of the method
for each type of equation.
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