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SOME PROBABILITY THEORY-BASED INEQUALITIES FOR

THE INCOMPLETE GAMMA FUNCTION

STEVEN G. FROM

Abstract. In this paper, we present new inequalities and bounds involving
the incomplete gamma function and related functions. Many of these new

inequalities and bounds are based upon results, some well known and some

not as well known, from probability theory and reliability theory. When these
results are combined with other mathematical techniques, some very good up-

per and lower bounds are obtained. In particular, improvements of previously

discussed bounds are presented.

1. Introduction

The gamma function is defined by

Γ(a) =

∫ ∞
0

ta−1e−t dt, a > 0. (1.1)

The incomplete gamma functions are given by

γ(a, x) =

∫ x

0

ta−1e−t dt (1.2)

and

Γ(a, x) =

∫ ∞
x

ta−1e−t dt. (1.3)

Clearly, Γ(a) = γ(a, x) + Γ(a, x) for a > 0, x > 0. Also,

γ(a, x) = a−1xag(x), (1.4)

where

g(x) =

∫ 1

0

e−txh(t) dt (1.5)

with

h(t) = ata−1, 0 < t < 1. (1.6)
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Some related integrals of interest are, for p > 0,∫ ∞
x

e−t
p

dt =
1

p
Γ

(
1

p
, xp
)

(1.7)

and ∫ x

0

e−t
p

dt =
1

p
Γ

(
1

p

)
− 1

p
Γ

(
1

p
, xp
)
. (1.8)

The aim of this paper is to present new bounds and inequalities involving the
incomplete gamma function γ(a, x) given in (1.2). This will also allow us to give
new bounds for the related integral in (1.8).

Before presenting the new results, we first discuss some previously proposed
bounds and inequalities.

Theorem 1.1 (Theorem 4.1 of Neuman [13]).

exp

(
−ax
a+ 1

)
≤ a

xa
γ(a, x) = g(x) ≤ 1F1(a; a+ 1;−x) ≤ 1 + ae−x

a+ 1
, (1.9)

where 1F1 is Kummer’s confluent hypergeometric function.

Theorem 1.2 (Theorem 1 of Alzer [1]). Let p 6= 1 be a positive real number.
If 0 < p < 1, let α = 1 and β = [Γ(1 + 1

p )]−p. If p > 1, let α = [Γ(1 + 1
p )]−p and

β = 1. Then for x > 0,

[1− e−βx
p

]1/p <
1

Γ(1 + 1
p )

∫ x

0

e−t
p

dt < [1− eαx
p

]
1
p . (1.10)

Theorem 1.3 (Theorem 2 of Luo et al. [11]). Let a, b, p > 0. Then

1− 1− e−αxp

a(p+ 1)
<

1

x

∫ x

0

e−t
p

dt < 1− 1− e−bxp

b(p+ 1)
(1.11)

holds for all x > 0 iff 0 < a ≤ a0 = 1
p+1 and b ≥ a∗0 = p+1

2p+1 . In particular,

exp

(
−xp

p+ 1

)
<

1

x

∫ x

0

e−t
p

dt <

(
p

p+ 1

)2

+
2p+ 1

(p+ 1)2
exp

(
−
(
p+ 1

2p+ 1

)
xp
)

(1.12)
holds for x > 0 with the best constants a0 = 1

p+1 and a∗0 = p+1
2p+1 .

After presenting the new bounds in Section 3, we shall compare them to the
bounds given in Theorems 1.1–1.3.

For many other bounds and other inequalities involving the functions in (1.1)–
(1.8), see the related works [6, 7, 8, 9, 12, 14, 15, 16, 17] and the references contained
in these works.

2. Some Preliminary Results

To derive the new bounds and other inequalities, we shall need various definitions
and results from probability theory and reliability theory as well as a few other
results. These are presented next. See Barlow and Proschan [2, 3] for information
on the reliability theory results used in this paper.

Definition 2.1. Let Y denote a nonnegative continuous random variable with cu-
mulative distribution function (cdf) H(y) = P (Y ≤ y), and suppose that Y has
a probability density function (pdf) h(y) = H ′(y). Assuming that all the integrals
given below are convergent, define the following:
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(a) The survivor function is S(y) = P (Y > y) = 1−H(y).
(b) The mean (expected) value of Y is E(Y ) =

∫∞
0
yh(y) dy =

∫∞
0
S(y) dy.

(c) The second moment of Y is

E(Y 2) =

∫ ∞
0

y2h(y) dy =

∫ ∞
0

2yS(y) dy.

(d) The moment-generating function (mgf) of Y is

MY (s) = E(esY ) =

∫ ∞
0

esyh(y) dy.

(e) The failure rate function is r(y) = h(y)
S(y) if S(y) > 0.

(f) The mean residual life function of Y is the conditional expected value

L(y) = E(Y − y) | Y > y) =

∫∞
y
S(u) du

S(y)
=

∫∞
y

(u− y) dH(u)

S(y)

if S(y) > 0.

The functions in parts (d), (e), and (f) of Definition 2.1 play prominent roles in
probability theory, statistics, and reliability theory. We shall see that this is the
case when we derive new bounds and inequalities in Section 3. In part (d), if Y is
a bounded random variable. (which will be the case later), then MY (s) will exist
for all real s.

Definition 2.2. Let X be a nonnegative continuous random variable with cdf
H(x) = P (X ≤ x) and survivor function S(x) = 1−H(x).

(a) H is a decreasing failure rate (DFR) distribution if S(x+t)
S(t) is nondecreasing

in t ≥ 0 for every x ≥ 0. If X has a pdf h(x) = H ′(x), then this is

equivalent to the function r(x) = h(x)
S(x) being nonincreasing in x.

(b) H is a decreasing failure rate on average (DFRA) distribution if −Ln(S(x))x

is decreasing in x ≥ 0 (equivalently, if [S(x)]1/x is increasing in x ≥ 0).
(c) H is a new is worse than used (NWU) distribution if S(x+ y) ≥ S(x)S(y),

x ≥ 0, y ≥ 0.

It is well known that if H is DFR, then H is DFRA. Also, if H is DFRA, then
H is NWU. (See, for example, Barlow and Proschan [3].) Sometimes we shall say
that the random variable X is DFR, DFRA, or NWU, meaning that H, the cdf of
X, is a member of that class.

Lemma 2.1. Suppose that X is DFR, and let

µX = E(X) =

∫ ∞
0

S(x) dx, 0 < µX <∞.

Then

S(x) ≤ e−x/µX if 0 ≤ x ≤ µX (2.1)

and

S(x) ≤ e−1µX
x

if x ≥ µX . (2.2)

Proof. See either Theorem 6.10 of Barlow and Proschan [3] or Barlow and Proschan [2],
pp. 31–32. �
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Definition 2.3. Let I be an indexing set, and suppose that for every t ∈ I, Ft is
a cdf. Let {Ft : t ∈ I} be the set of all these cdfs, and let P be a probability measure
on I. Then F =

∫
I
Ft dP (t) is called the mixture of the distributions in {Ft : t ∈ I}

with respect to the mixing distribution P . Written in terms of survivor functions,
it is easily seen that S =

∫
I
St dP (t), where St = 1− Ft, t ∈ I, and S = 1− F .

In Section 3, we shall make use of Definition 2.3 in the following way: Let G(t)
be the cdf corresponding to the probability measure P , and let T denote an random
variable with cdf G(t). Now given that T = t, let X denote an random variable
having cdf Ft(x). Then by the theorem of total probability and assuming that
P (X ≥ 0) = 1 and I ⊆ [0,∞), X has cdf

F (x) = P (X ≤ x) =

∫ ∞
0

Ft(x) dG(t)

and X has survivor function

S(x) = P (X > x) =

∫ ∞
0

St(x) dG(t),

where St = 1− Ft.

Lemma 2.2. Let X be a nonnegative continuous random variable having survivor
function S(x) of the form given by

S(x) =

∫
I

St(x) dG(t). (2.3)

Then the following hold:

(a) If St(x) is DFR for all t ∈ I, then S(x) is DFR.
(b) If St(x) is DFRA for all t ∈ I, then S(x) is DFRA.

Proof. See Theorem 4.7 on p. 103 of Barlow and Proschan [3]. �

Lemma 2.3. Let T be a nonnegative random variable with mean

µT = E(T ) =

∫ ∞
0

S(t) dt

and second moment

µ
(2)
T = E(T 2) =

∫ ∞
0

2tS(t) dt <∞.

Then the following hold:

(a) Suppose T is a bounded random variable, that is, there is a positive real
number M with P (0 ≤ T ≤ M) = 1. Then for all real s, the moment-
generating function of T has upper bound

MT (s) = E(esT ) ≤ 1− µT
M

+
µT
M

exp(sM). (2.4)

(b) Let α = µT and β = µ
(2)
T , and suppose that s ≤ 0. Then

MT (s) = E(esT ) ≤ 1− α2

β
+
α2

β
exp

(
βs

α

)
. (2.5)

Proof. See Brook [4], pp. 171–173. �
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Definition 2.4. Let A be an interval subset of the real numbers, and let D =
{Pa(x) : a ∈ A} be a family of pdfs in the real variable x. Then D is a monotone

likelihood ratio family of pdfs if whenever a1, a2 ∈ A with a1 < a2,
Pa2

(x)

Pa1
(x) is a

nondecreasing function of w(x) for some real-valued function w(x) of x.

Lemma 2.4. Suppose D = {ha(x) : a ∈ A} is a family of pdfs with monotone
likelihood ratio, with w(x) = x, let ψ(x) be any nondecreasing function of x, let
X denote an random variable with pdf ha(x), and let Ea[ψ(X)] =

∫
A
ψ(x) dH(x).

Then Ea[ψ(X)] is a nondecreasing function of a ∈ A.

Proof. See Lehmann and Romano [10], pp. 70–71. �

Lemma 2.5. Let T be a continuous random variable with support in a compact
interval [a, b], and suppose that T has cdf H(t) satisfying H(a) = 0, H(b) = 1,
and 0 < H(t) < 1, a < t < b. In addition, let f(t) have second derivative f ′′(t)
continuous on [a, b], and let

q1(t) = inf{f ′′(u) : t ≤ u ≤ t+ L(t)}, (2.6)

q2(t) = sup{f ′′(u) : t ≤ u ≤ t+ L(t)}, (2.7)

L1 =
1

2

∫ b

a

q1(t)(L(t))2 dH(t), (2.8)

and

U1 =
1

2

∫ b

a

q2(t)(L(t))2 dH(t). (2.9)

Then

L1 ≤
∫ b

a

f(t) dH(t)− f

(∫ b

a

tdH(t)

)
≤ U1. (2.10)

Proof. See From [5], pp. 14–19. �

Note that (2.10) is a generalization of Jensen’s inequality to possibly noncon-
vex functions f(t) but also improves on Jensen’s inequality for nonlinear convex
functions.

Lemma 2.6. Let a > 0, and let T be a continuous random variable with pdf
ha(t) = ata−1 for 0 < t < 1, and ha(t) = 0 otherwise. Then the following hold:

(a)

E(T ) =
a

a+ 1
and E(T 2) =

a

a+ 2
. (2.11)

(b) T has mean residual life function

L(t) =

{
a
a+1

(
1−ta+1

1−ta

)
− t, 0 ≤ t < 1

0, t ≥ 1.
(2.12)

(c) Let La(t) = L(t), emphasizing the dependence of L(t) on a. Then La(t) is
increasing in a for a > 0, 0 ≤ t < 1.

(d) If 0 < a ≤ 1, then

0 ≤ 1− t
−Ln(t)

− t ≤ La(t) ≤ 1− t
2

, 0 < t < 1. (2.13)



6 STEVEN G. FROM

(e) If a ≥ 1, then

1− t
2
≤ L(t) ≤ a

a+ 1
(1 + ta)− t ≤ a− t

a+ 1
, 0 ≤ t < 1. (2.14)

Proof. The proofs of (a) and (b) are straightforward and omitted.
To prove (c), apply Lemma 2.4 with A = (0,∞), fix t with 0 ≤ t < 1, and define

a family D = {Pa(x) : a ∈ A} of probability density functions with A = (0,∞) by

Pa(x) =

{
ha(x)
1−ta , t ≤ x < 1

0, otherwise.

In addition, let X be an random variable with pdf Pa(x), given t, and suppose that
a1, a2 ∈ A with a1 < a2. Then

Pa2(x)

Pa1(x)
=
ha2(x)

ha1(x)
=
a2
a1
xa2−a1

is nondecreasing in w(x) = x. Thus D is a monotone likelihood ratio family of pdfs
in x. Let ψ(x) = x. Clearly, ψ(x) is nondecreasing in x. By Lemma 2.4, Ea[ψ(X)]
is nondecreasing in a > 0 but Ea[ψ(X)] = La(t). Thus La(t) is nondecreasing in a
for a > 0.

To prove (d), let m(a) = Ea[ψ(X)] = La(t), emphasizing the dependence of L(t)
on a. By part (c),

L(0+) ≤ La(t) ≤ m(1) =
1− t

2
.

By l’Hôpital’s Rule and part (b),

L(0+) = lim
a→0+

La(t) =
1− t

−Ln(t)− t
The proof of part (e) is similar to that of part (d) and follows from parts (b)

and (c) of the Lemma, hence it is omitted. �

3. New Bounds and Inequalities

In this section, we present new bounds for various functions and integrals dis-
cussed in Section 1.

First, let’s consider bounds for g(x) = a
xa γ(a, x). Before presenting new bounds,

we show that the upper bound g(x) ≤ 1+ae−x

a+1 of Neuman [13] in Theorem 1.1 can

be derived immediately from Lemma 2.3(a). Since

g(x) =

∫ 1

0

e−xtata−1 dt, a > 0, (3.1)

letting T be an random variable with pdf h(t) = ata−1, 0 < t < 1, we obtain
µT = E(T ) = a

a+1 . With M = 1 in Lemma 2.3(a) and letting s = −x, we obtain

g(x) = MT (−x) ≤ 1− µT
M

+
µT
M

exp(−xM) =
1 + ae−x

a+ 1
.

The lower bound of Neuman [13] in Theorem 1.1 also follows immediately from
Jensen’s inequality using µT = a

a+1 and the fact that for any fixed x ≥ 0, f(x) =

e−tx is a convex function of t for t with 0 ≤ t ≤ 1.
Now let’s apply Lemma 2.3(b) to obtain a new upper bound for g(x) which

improves on the upper bound of Neuman [13].
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Theorem 3.1. For all a > 0 and x ≥ 0, g(x) satisfies the upper bound inequality

g(x) ≤ 1

(a+ 1)2

[
1 + a(a+ 2)e−( a+1

a+2 )x
]
≤ 1 + ae−x

a+ 1
(3.2)

Equality holds in the last half iff x = 0.

Proof. Apply Lemmas 2.3(b) and 2.6(a) with α = µT = a
a+1 , β = µ

(2)
T = a

a+2 , and
s = −x, to get

MT (−x) = g(x) ≤ 1− α2

β
+
α2

β
exp

(
−β
α
x

)
=

1

(a+ 1)2

[
1 + a(a+ 2)e−( a+1

a+2 )x
]
.

This proves the first half of (3.2). To prove the second half, we use the fact that

1 + a(a+ 2)e−( a+1
a+2 )x

(a+ 1)2
≤ 1 + ae−x

a+ 1
iff R(x) ≤ 0,

where

R(x) =
1

(a+ 1)2

(
1 + a(a+ 2)e−( a+1

a+2 )x
)
−
(

1 + ae−x

a+ 1

)
.

Then differentiating with respect to x, some algebra gives

R′(x) ≤ 0 iff
a

a+ 1

(
e−x − e−( a+1

a+2 )x
)
≤ 0,

which is obviously true, with strict inequality unless x = 0. Since R(0) = 0, the
Mean Value Theorem gives R(x) ≤ 0, with R(x) < 0 unless x = 0. �

Later, we shall present several more improvements of Theorem 1.1 bounds.

Theorem 3.2. Suppose a > 1. Then for x ≥ 0,

g(x) ≤ exp

(
−
(
a− 1

a

)
x

)
, 0 ≤ x ≤ a

a− 1
(3.3)

and

g(x) ≤

(
a
a−1

)
e−1

x
, x >

a

a− 1
. (3.4)

Proof.

g(x) =

∫ 1

0

e−xt · ata−1 dt =

∫ 1

0

St(x) dG(t),

where St(x) = e−xt and

G(t) =

 0, t ≤ 0
ta, 0 < t < 1
1, t ≥ 1.

Clearly, St(x) is DFR for all t ∈ I = [0, 1] and all x ≥ 0.
By Lemma 2.2(a), g(x) is a DFR distribution in x ≥ 0. Thus g(x) is a DFR

survivor function that corresponds to a nonnegative random variable X. Letting
S(x) = g(x) in Lemma 2.1, and noting that µX = E(X) <∞ iff a > 1, we get

S(x) ≤ e−x/µX , 0 ≤ x ≤ µX (3.5)

and

S(x) ≤ e−1µX
x

, x > µX . (3.6)
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Upon applying Fubini’s Theorem, we get that for a > 1,

µX =

∫ ∞
0

S(x) dx =

∫ ∞
0

∫ 1

0

e−xtata−1 dtdx

=

∫ 1

0

ata−1
∫ ∞
0

e−tx dxdt =
a

a− 1
.

Substituting a
a−1 for µX in (3.5) and (3.6), we obtain the Theorem. �

Theorem 3.3. For all a > 0 and x ≥ 0,

g(x) ≤ e−x
[
1 +

a

(a+ 1)(a+ 2)
x+

2

(a+ 1)(a+ 2)
(ex − 1)

]
, (3.7)

which is strictly less than the Theorem 1.1 upper bound of Neuman [13] for x > 0.

Proof. Let w(x) = exg(x). Then a simple computation gives

w′(x) = ex
∫ 1

0

e−tx[ata−1(1− t)] dt

=
ex

a+ 1

∫ 1

0

e−tx[a(a+ 1)ta−1(1− t)] dt. (3.8)

Now the expression in brackets in the integrand in (3.8) is a pdf. Applying
Lemma 2.3(a) and proceeding as in the proof of Theorem 3.1, we obtain (using
w(0) = 1)

w′(x) ≤ ex

a+ 1

(
1− a

a+ 2
+

a

a+ 2
e−x

)
Thus

w(x) = w(0) +

∫ x

0

w′(t) dt

≤
[
1 +

a

(a+ 1)(a+ 2)
x+

2

(a+ 1)(a+ 2)
(ex − 1)

]
Multiplication by e−x produces (3.7), and this proves the first half of the Theorem.

To show the improvement of the new upper bound over the Theorem 1.1 upper
bound, note that the improvement occurs iff

2

a+ 2
+

(
a(a+ 1)

a+ 2
+

a

a+ 2

)
e−x < 1 + ae−x, (3.9)

which holds iff (x − 1)e−x < 1 for x > 0. Since (x − 1)e−x ≤ e−2 < 1 for x > 0,
(3.9) holds, and this proves the second half of the Theorem. �

Next, we show one of several ways to improve on the lower bound of Theorem
1.1 given in Neuman [13].

Theorem 3.4. For all a > 0 and x ≥ 0,

g(x) ≥ a

2a+ 2
e−x +

a+ 2

2a+ 2
e−( a

a+2 )x, (3.10)

which is strictly greater than the lower bound e−( a
a+1 )x in Theorem 1.1 for x > 0.
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Proof. Proceeding as in the proof of Theorem 3.3,

w′(x) =
ex

a+ 1

∫ 1

0

e−tx[a(a+ 1)ta+1(1− t)] dt

Applying Jensen’s inequality to the integral, we obtain w′(x) ≥ 1
a+1e

( 2
a+2 )x. Thus

g(x) ≥
(

1 +

∫ x

0

1

a+ 1
e(

2
a+2 )t dt

)
e−x

=
a

2a+ 2
e−x +

a+ 2

2a+ 2
e−( a

a+2 )x.

This completes the proof of the first part of the Theorem.
To show the improvement of the new lower bound over the Theorem 1.1 lower

bound, note that
a

2a+ 2
e−x +

a+ 2

2a+ 2
e−( a

a+2 )x

is a weighted arithmetic mean of e−x and e−( a
a+2 )x, which (for x > 0) is strictly

greater than the corresponding weighted geometric mean,(
e−x

) a
2a+2

(
e−( a

a+2 )x
) a+2

2a+2

= e−( a
a+1 )x,

which is the lower bound of Theorem 1.1. �

Theorem 3.5. For all a > 0 and x ≥ 0,

g(x) ≤ e−x
[
1 +

1

(a+ 1)2(a+ 2)

(
2ex − 2

+
1

2
a(a+ 3)2

(
exp

(
2x

a+ 3

)
− 1

))]
. (3.11)

Proof. Proceeding as in the proofs of Theorems 3.3 and 3.4, let w(x) = exg(x).
Then applying Lemma 2.3(b) and Lemma 2.6(a), we obtain

w′(x) =
ex

a+ 1

∫ 1

0

e−tx[a(a+ 1)ta+1(1− t)] dt

with α2

β = a(a+3)
(a+1)(a+2) and β

α = a
a+3 , hence

w′(x) ≤ ex

a+ 1

[
1− a(a+ 3)

(a+ 1)(a+ 2)
+

a(a+ 3)

(a+ 1)(a+ 2)
exp

(
−
(
a+ 1

a+ 3

)
x

)]
=

1

(a+ 1)2(a+ 2)

[
2ex + a(a+ 3) exp

((
2

a+ 3

)
x

)]
.

Thus

w(x) = 1 +

∫ x

0

w′(t) dt

≤
[
1 +

1

(a+ 1)2(a+ 2)

(
2ex − 2

+
1

2
a(a+ 3)2

(
exp

(
2x

a+ 3

)
− 1

))]
.

Multiplying by e−x, we obtain (3.11). �
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Theorem 3.6. For all a ≥ 1 and x ≥ 0,

g(x) ≥ e−( a
a+1 )x +

x2 exp
(
−
(

a(2a+3)
(a+1)(a+3)x

))
4(a+ 1)(a+ 2)

, (3.12)

which is clearly greater than the Theorem 1.1 lower bound of e−( a
a+1 )x for x > 0.

Proof. By Lemma 2.6(e),

1− t
2
≤ L(t) ≤ a− t

a+ 1
, 0 ≤ t ≤ 1. (3.13)

Let T be a random variable with pdf h(t) = ha(t) = ata−1, 0 < t < 1. Applying
Lemma 2.5 with f(t) = e−tx, we get

q1(t) = x2e−(t+L(t))x ≥ x2e−( a
a+1 )(1+t)x

by (3.13). Thus we obtain

g(x) ≥ e−( a
a+1 )x +

1

2
x2
∫ 1

0

e−( a
a+1 )(1+t)x

(
1− t

2

)2

ata−1 dt

= e−( a
a−1 )x

+
x2 exp

(
−
(

a
a+1

)
x
)

4(a+ 1)(a+ 2)

∫ 1

0

e−( a
a+1 )xt

[
ata−1(1− t)2 (a+ 1)(a+ 2)

2

]
dt.

(3.14)

The expression in brackets in the integrand in (3.14) is a pdf with support in (0, 1).

Since e−( a
a+1 )xt is convex in t for all x ≥ 0, applying Jensen’s inequality to this

integrand and using∫ 1

0

[
ata(1− t)2 (a+ 1)(a+ 2)

2

]
dt =

a

a+ 3
,

we obtain the following after simplification:

g(x) ≥ e−( a
a+1 )x +

x2 exp
(
− a(2a+3)

(a+1)(a+3)x
)

4(a+ 1)(a+ 2)
.

�

Theorem 3.7. For all a with 0 < a ≤ 1 and all x ≥ 0,

g(x) ≤ e−( a
a+1 )x +

x2

4(a+ 1)(a+ 2)

[
1− a(a+ 4)

(a+ 1)(a+ 3)

(
1

− exp

(
−
(
a+ 1

a+ 4

)
x

))]
. (3.15)

Proof. We will proceed as in the proof of Theorem 3.6. Lemma 2.6(d) gives

0 ≤ L(t) ≤ 1− t
2

. (3.16)
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Then applying Lemma 2.5 with f(t) = e−tx, we get q2(t) = x2e−tx. Thus we obtain

g(x) ≤ e−( a
a+1 )x +

x2

2

∫ 1

0

e−tx
(

1− t
2

)2

ata−1 dt

= e−( a
a+1 )x +

x2

4(a+ 1)(a+ 2)

∫ 1

0

e−tx
[

(a+ 1)(a+ 2)

2
(1− t)2ata−1

]
dt.

(3.17)

The expression in brackets in the integrand in (3.17) is a pdf with mean α = a
a+3

and second moment β = a(a+1)
(a+3)(a+4) .

Applying Lemma 2.3(b) with the random variable T having the same pdf, we
obtain

g(x) ≤ e−( a
a+1 )x +

x2

4(a+ 1)(a+ 2)

[
1− a(a+ 4)

(a+ 1)(a+ 3)

+
a(a+ 4)

(a+ 1)(a+ 3)
exp

(
−
(
a+ 1

a+ 4

)
x

)]
= e−( a

a+1 )x +
x2

4(a+ 1)(a+ 2)

[
1− a(a+ 4)

(a+ 1)(a+ 3)

(
1

− exp

(
−
(
a+ 1

a+ 4

)
x

))]
.

�

Next, we give new bounds for the function 1
x

∫ x
0
e−t

p

dt for p > 0 and x > 0. We
shall see that we can recover the upper bounds of Luo et al. [11] given in Theorem
1.3 and even improve on them.

Theorem 3.8. Let p > 0, and let a = 1
p . Then for x > 0,

1

x

[
a

2a+ 2
e−x

p

+
a+ 2

2a+ 2
e−( a

a+2 )xp

]
≤ 1

x

∫ x

0

e−t
p

dt

≤ e−x
p

[
1 +

1

(a+ 1)2(a+ 2)

(
2ex

p

− 2

+
1

2
a(a+ 3)2

(
exp

((
2

a+ 3

)
xp
)
− 1

))]
. (3.18)

Proof. Note that 1
x

∫ x
0
e−t

p

dt = 1
xg(xp), since a change of variables gives

1

x

∫ x

0

e−t
p

dt =

∫ xp

0

e−w
[

1

x

(
1

p

)
w

1
p−1
]

dw =
1

x
g(xp)

=

∫ xp

0

e−wha(w) dw,

(3.19)

where a = 1
p . Now apply Theorem 3.5 to get an upper bound on g(xp). This

completes the proof of the upper bound in (3.18).
The proof of the lower bound in (3.18) follows immediately from Theorem 3.4

after applying (3.19). �
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Remark 3.1. From (3.19), it can be shown that if we apply Lemma 2.3(a) to the
integral relation

1

x

∫ x

0

e−t
p

dt =

∫ xp

0

e−w
[

1

x

(
1

p

)
w

1
p−1
]

dw,

this results in 1
x

∫ x
0
e−t

p

dt < 1− 1−e−xp

(p+1) , which is the upper bound of Luo et al. [11]

given in (3.19) for b = 1. If we apply Lemma 2.3(b) instead, we obtain

1

x

∫ x

0

e−t
p

< 1− (1 + 2p)

(p+ 1)2
+

1 + 2p

(p+ 1)2
exp

(
−
(
p+ 1

2p+ 1

)
xp
)
,

which is the upper bound of Luo et al. [11] given in (1.12).

Theorem 3.9. For all a > 0 and x ≥ 0,

g(x) ≥ 1

2
e−x

[
(1 + x− a) +

√
(1 + x− a)2 + 4a

]
. (3.20)

Proof. Since g(x) is DFR, the failure rate function is r(x) = − g
′(x)
g(x) , which is

decreasing in x ≥ 0. Thus r(x) is log convex, with g(x)g′′(x) ≥ (g′(x))2. By
Leibniz’s Rule for differentiating an integral and integration by parts,

− g′(x) =

∫ 1

0

e−txata dt = −a
x
e−x +

a

x
g(x) (3.21)

and

g′′(x) = −a
x
e−x − a

x2
e−x − a2

x2
e−x +

(
a2 + a

x2

)
g(x) (3.22)

By (3.21) and (3.22), we obtain the following after simplification:

g(x)g′′(x)− (g′(x))2 ≥ 0

iff (g(x))2 + (a− x− 1)e−xg(x)− ae−2x ≥ 0.
(3.23)

Solving the quadratic (3.23) for g(x) and throwing out the negative root, we obtain
the following after simplification:

g(x) ≥ 1

2
e−x

[
(1 + x− a) +

√
(1 + x− a)2 + 4a

]
.

�

Among the bounds presented thus far, extensive comparisons show that The-
orems 3.4, 3.5, and 3.8 provide the best lower and upper bounds overall and are
easily computed. All the previously discussed bounds, both old and new, can be
improved upon, and this will be discussed later. We considered several different
methods to obtain bounds, since each method can be applied to special functions
besides the ones considered in this work. In most cases, no one bound is uniformly
superior to all other bounds (except for a few bounds discussed earlier), so for this
reason a good number of bounds was presented. In any case, several new bounds—
utilizing several different methods—that improve on previously discussed bounds
given in the literature have been presented.

Next, we present some interesting new inequalities by applying various reliability
theory concepts.

Theorem 3.10. For all a > 0, g(x) =
∫ 1

0
e−txata−1 dt satisfies the following

inequalities:



SOME PROBABILITY THEORY-BASED INEQUALITIES FOR THE INCOMPLETE GAMMA13

(a)

(g(y))1/y ≥ (g(x))1/x, 0 ≤ x ≤ y <∞ (3.24)

(b)

g(x+ y) ≥ g(x)g(y), x ≥ 0, y ≥ 0.

Proof. By Lemma 2.2(a), g(x) is DFR for x ≥ 0. By part (b) of that lemma, g(x)
is DFRA. By Definition 2.2(b), (g(x))1/x is increasing in x. This proves part (a).

Part (b) of the Theorem follows immediately from Definition 2.2(c) and the fact
that DFRA distributions are NWU. �

Theorem 3.11. Let g(x) = ga(x) =
∫ 1

0
e−txata−1 dt to emphasize the dependence

of g on a > 0. Suppose m is a positive integer such that m ≤ a ≤ m+ 1. Then

(m+ 1)!

xm+1

1−
m∑
j=0

xje−x

j!

 ≤ ga(x) ≤ m!

xm

1−
m−1∑
j=0

xje−x

j!

 . (3.25)

Proof. Let pa(t) = ata−1, a ≥ 1. Then D = {pa(t) : a ≥ 1} is a family of
pdfs with monotone likelihood ratio in t, since 1 ≤ a1 ≤ a2 < ∞ implies that
pa2

(t)

pa1 (t)
= a2

a1
ta2−a1 is increasing in t.

Since ψ(t) = e−tx is decreasing in t for x ≥ 0, Lemma 2.4 gives that ga(x)
is decreasing in a for all x ≥ 0. Thus gm+1(x) ≤ ga(x) ≤ gm(x) for all x ≥ 0.

Also, gm(x) = m
xm (m − 1)!

[
1−

∑m−1
j=0

xje−x

j!

]
, by repeated integration by parts.

Substituting m+ 1 for m completes the proof. �

The next theorem does not give bounds on ga(x), but it is an interesting inequal-
ity of a new type.

Theorem 3.12. Let ga(x) =
∫ 1

0
e−txata−t dt, a > 0, x ≥ 0. Then for x1, x2 with

0 ≤ x1 ≤ x2 <∞,

ga+1(x1)ga(x2) ≥ ga(x1)ga+1(x2). (3.26)

Proof. In the proof of Theorem 3.2, it was established that ga(x) is DFR in x ≥ 0

for all a > 0. By Definition 2.1, r(x) =
− d

dx (ga(x))

ga(x)
is decreasing in x ≥ 0 for a > 0.

However, − d
dx (ga(x)) =

(
a
a+1

)
ga+1(x). Thus r(x) =

( a
a+1 )ga+1(x)

ga(x)
is decreasing in

x, from which (3.26) follows. �

Many of the bounds in this paper can be improved by using repeated integration
by parts or by differentiation of the function for which bounds or inequalities are
desired with respect to x or a. We give one such example showing how to greatly

improve on the upper bound on g(x) = ga(x) =
∫ 1

0
e−txata−1 dt. Integration by

parts of this integral produces the recurrence relation

ga(x) = e−x +
x

a+ 1
ga+1(x). (3.27)
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Iteration of (3.27) and a simple induction argument using repeated integration by
parts gives

ga(x) = e−x

1 +

k∑
j=1

(
j∏
i=1

1

a+ i

)
xj


+

(
xk+1∏k+1

i=1 (a+ i)

)
ga+k+1(x), k = 1, 2, 3, . . .

(3.28)

Clearly, any upper bound on ga+k+1(x) gives an upper bound on ga(x). This
method usually improves on an upper bound on ga(x) if the same formula for an
upper bound is used. A similar statement holds for lower bounds. In addition,
previous bounds which required either the condition 0 < a < 1 or the condition
a ≥ 1 will extend to the other condition to give bounds valid for all a > 0. In
particular, this is the case if (3.28) is applied to Theorem 3.2 bounds (3.3) and
(3.4). For k = 1, we obtain the following for all a > 0:

g(x) = ga(x) ≤ e−x +
x

a+ 1
exp

(
−
(

a

a+ 1

)
x

)
, 0 ≤ x ≤ a+ 1

a

and

g(x) = ga(x) ≤ e−x +
x

a+ 1

((
a+1
a

)
e−1

x

)
= e−x +

e−1

a
, x >

a+ 1

a
.

For x with 0 ≤ x ≤ a+1
a , this bound is inferior to the upper (Theorem 1.1) bound

of Neuman [13], but as x → ∞ it becomes significantly better. Even greater
improvement of bounds results if the best bounds (overall) given in Theorems 3.4,
3.11, and 3.8 are used to get bounds on ga+k+1(x) and are then substituted into
(3.28) to get superior bounds on ga(x) or on

∫ x
0
e−t

p

dt for p > 0. The bounds
given in Theorems 3.6 and 3.7 are not as good as these bounds, but the methods
used to obtain them can be used to obtain bounds on other special functions, such
as the beta function and other special functions related to the gamma function.
Hopefully, we will report on this in future works.

4. Concluding Remarks

In this paper, many new bounds and inequalities for the incomplete gamma func-
tion have been discussed. Many of these were derived using results from reliability
theory and probability theory results on bounding the moment-generating function
of a random variable, in conjunction with other methods. The new bounds are often
a significant improvement on previously proposed bounds. Moreover, the methods
used can be used for other special functions and will be discussed in future works.
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