JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS

ISSN: 2217-4303, URL: www.ilirias.com/jiasf

VOLUME 13 ISSUE 2(2022), PAGES 37-45. HTTPS://DOI.ORG/10.54379/JIASF-2022-2-4

ON THE DENSITY OF LAGUERRE FUNCTIONS IN SOME BANACH FUNCTION SPACES

CLÁUDIO FERNANDES, OLEKSIY KARLOVYCH, AND MÁRCIO VALENTE

ABSTRACT. Let $\lambda > 0$ and $\Phi_{\lambda} := \{\varphi_{1,\lambda}, \varphi_{2,\lambda}, \dots\}$ be the system of dilated Laguerre functions. We show that if $L^1(\mathbb{R}^+) \cap L^{\infty}(\mathbb{R}^+)$ is embedded into a separable Banach function space $X(\mathbb{R}^+)$, then the linear span of Φ_{λ} is dense in $X(\mathbb{R}^+)$. This implies that the linear span of Φ_{λ} is dense in every separable rearrangement-invariant space $X(\mathbb{R}^+)$ and in every separable variable Lebesgue space $L^{p(\cdot)}(\mathbb{R}^+)$.

1. Introduction

For $n \in \mathbb{N} \cup \{0\}$, the *n*-th Laguerre polynomial is defined by

$$L_n(x) := \frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x}) = \sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{k!} x^k, \quad x \in \mathbb{R}$$
 (1.1)

(see, e.g., [18, Section 5.1]). It is well known that the system of Laguerre functions $\Phi := \{\varphi_1, \varphi_2, \dots\}$ defined by

$$\varphi_n(x) := L_{n-1}(x)e^{-x/2}, \quad x \in \mathbb{R}, \quad n \in \mathbb{N}, \tag{1.2}$$

is an orthonormal system in $L^2(\mathbb{R}^+)$, that is,

$$\int_0^\infty \varphi_n(x)\varphi_m(x) dx = \begin{cases} 1, & n = m, \\ 0, & n \neq m \end{cases}$$

(see, e.g., [11, Section 4.8.2]). Moreover, it is complete in $L^2(\mathbb{R}^+)$, that is, if $g \in L^2(\mathbb{R}^+)$ and

$$\int_0^\infty \varphi_n(x)g(x)\,dx = 0 \quad \text{for all} \quad n \in \mathbb{N},$$

then g(x) = 0 for almost every $x \in \mathbb{R}^+$ (see, e.g., [11, Section 4.8.3] or [13, Ch. VIII, §4.3]).

²⁰¹⁰ Mathematics Subject Classification. Primary 33C45, 46E30.

Key words and phrases. Laguerre functions, Banach function space, rearrangement-invariant space, variable Lebesgue space.

^{©2022} Ilirias Research Institute, Prishtinë, Kosovë.

Submitted February 15, 2022. Published June 18, 2022.

Communicated by Pankaj Jain.

This work is funded by national funds through the FCT - Fundao para a Cincia e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications).

The system of Laguerre functions or its modifications arise in many areas of mathematics (see, e.g., [8], [9, Ch. 4], [14, Ch. 4], [17], [19], [20, Ch. 8], [21, Ch. VIII, § 5], to mention just a few works, where Laguerre functions play an important role). Our motivations come from the theory of Wiener-Hopf operators

$$(Wf)(x) := \int_0^\infty k(x - y)f(y) \, dy$$

on Lebesgue spaces $L^p(\mathbb{R}^+)$, $1 , where the system of dilated Laguerre functions <math>\Phi_2 := \{\varphi_{1,2}, \varphi_{2,2}, \ldots\}$ with $\varphi_{n,2}(x) = \varphi_n(2x)$ for $x \in \mathbb{R}^+$ and $n \in \mathbb{N}$, arises naturally (see, e.g., [7, Ch. I, Section 3], [10, Ch. I, §8.3], [15, Sections 4.2–4.3]). In particular, the density of the linear span of Φ_2 in $L^p(\mathbb{R}^+)$ for $1 plays a crucial role in the proof of the fact that the Banach algebra <math>\operatorname{alg}(W(C(\mathbb{R})))$ generated by Wiener-Hopf operators with continuous symbols contains all compact operators on $L^p(\mathbb{R}^+)$ (see, [4, Section 9.9] and also [12, Lemmas 5.2–5.3]).

The aim of this paper is to prove that for every $\lambda > 0$ the linear span of the system of dilated Laguerre functions

$$\Phi_{\lambda} := \{ \varphi_1(\lambda x), \varphi_2(\lambda x), \dots \}$$

is dense in a separable Banach function space $X(\mathbb{R}^+)$ under a natural additional assumption that $L^1(\mathbb{R}^+) \cap L^\infty(\mathbb{R}^+)$ is embedded into $X(\mathbb{R}^+)$. We postpone the technical definition of a Banach function space to Section 2.1 (see also [2, Ch. 1] for a complete account on the theory of Banach function spaces). Here we only mention that the class of Banach function spaces is very large, it contains all Lebesgue spaces $L^p(\mathbb{R}^+)$, all Orlicz spaces $L^p(\mathbb{R}^+)$, and all Lorentz spaces $L^{p,q}(\mathbb{R}^+)$; which are rearrangement-invariant (see Section 2.2 and [2, Ch. 2]); as well as, all variable Lebesgue spaces $L^{p(\cdot)}(\mathbb{R}^+)$ (see Section 2.3 and [5, 6]); which are not rearrangement-invariant.

Theorem 1.1 (Main result). Let $\lambda > 0$. If $L^1(\mathbb{R}^+) \cap L^{\infty}(\mathbb{R}^+)$ is embedded into a separable Banach function space $X(\mathbb{R}^+)$, then the linear span of Φ_{λ} is dense in $X(\mathbb{R}^+)$.

The paper is organized as follows. In Section 2, we recall definitions of the class of Banach function spaces and their associate spaces, of its subclass of rearrangement-invariant Banach function spaces, as well as, of variable Lebesgue spaces $L^{p(\cdot)}(\mathbb{R}^+)$, which constitute a distinguished example of non-rearrangement-invariant Banach function spaces. We pay special attention to the mutually associate rearrangement-invariant Banach function spaces $L^1(\mathbb{R}^+) \cap L^{\infty}(\mathbb{R}^+)$ and $L^1(\mathbb{R}^+) + L^{\infty}(\mathbb{R}^+)$. Further, we state Lerch's theorem and recall a suitable form of Stirling's formula.

In Section 3, we show that the system of dilated Laguerre functions Φ_{λ} is contained in $L^1(\mathbb{R}^+) \cap L^{\infty}(\mathbb{R}^+)$. Further, following the scheme of the proof of [11, Section 4.8.3], we show that Φ_{λ} is complete in $L^1(\mathbb{R}^+) + L^{\infty}(\mathbb{R}^+)$. Finally, we prove Theorem 1.1 and state its corollary for separable rearrangement-invariant Banach function spaces and separable variable Lebesgue spaces $L^{p(\cdot)}(\mathbb{R}^+)$.

We plan to employ the results obtained in this work to the study of Banach algebras generated by Wiener-Hopf operators on variable Lebesgue spaces in a forthcoming publication.

2. Preliminaries

- 2.1. Banach function spaces. The set of all Lebesgue measurable extended complex-valued functions on \mathbb{R}^+ is denoted by $\mathcal{M}(\mathbb{R}^+)$. Let $\mathcal{M}^+(\mathbb{R}^+)$ be the subset of functions in $\mathcal{M}(\mathbb{R}^+)$ whose values lie in $[0,\infty]$. The Lebesgue measure of a measurable set $E \subset \mathbb{R}^+$ is denoted by |E| and its characteristic function is denoted by χ_E . Following [2, Ch. 1, Definition 1.1], a mapping $\rho: \mathcal{M}^+(\mathbb{R}^+) \to [0,\infty]$ is called a Banach function norm if, for all functions f,g,f_n $(n \in \mathbb{N})$ in $\mathcal{M}^+(\mathbb{R}^+)$, for all constants $a \geq 0$, and for all measurable subsets E of \mathbb{R}^+ , the following properties hold:
 - (A1) $\rho(f) = 0 \Leftrightarrow f = 0 \text{ a.e.}, \quad \rho(af) = a\rho(f), \quad \rho(f+g) \leq \rho(f) + \rho(g),$
 - (A2) $0 \le g \le f \text{ a.e. } \Rightarrow \rho(g) \le \rho(f)$ (the lattice property),
 - (A3) $0 \le f_n \uparrow f$ a.e. $\Rightarrow \rho(f_n) \uparrow \rho(f)$ (the Fatou property),
 - (A4) $|E| < \infty \Rightarrow \rho(\chi_E) < \infty$,

(A5)
$$|E| < \infty \Rightarrow \int_{E} f(x) dx \le C_{E} \rho(f)$$

with $C_E \in (0, \infty)$ which may depend on E and ρ but is independent of f. When functions differing only on a set of measure zero are identified, the set $X(\mathbb{R}^+)$ of all functions $f \in \mathcal{M}(\mathbb{R}^+)$ for which $\rho(|f|) < \infty$ is called a Banach function space. For each $f \in X(\mathbb{R}^+)$, the norm of f is defined by

$$||f||_{X(\mathbb{R}^+)} := \rho(|f|).$$

Under the natural linear space operations and under this norm, the set $X(\mathbb{R}^+)$ becomes a Banach space (see [2, Ch. 1, Theorems 1.4 and 1.6]). If ρ is a Banach function norm, its associate norm ρ' is defined on $\mathcal{M}^+(\mathbb{R}^+)$ by

$$\rho'(g) := \sup \left\{ \int_{\mathbb{R}^+} f(x)g(x) \, dx \ : \ f \in \mathcal{M}^+(\mathbb{R}^+), \ \rho(f) \le 1 \right\}, \quad g \in \mathcal{M}^+(\mathbb{R}^+),$$

which is a Banach function norm itself [2, Ch. 1, Theorem 2.2]. The Banach function space $X'(\mathbb{R}^+)$ determined by the Banach function norm ρ' is called the associate space (Köthe dual) of $X(\mathbb{R}^+)$. The associate space $X'(\mathbb{R}^+)$ is naturally identified with a subspace of the Banach dual space $X^*(\mathbb{R}^+)$ (see [2, pp. 19–20]).

2.2. Rearrangement-invariant Banach function spaces. Let $\mathcal{M}_0(\mathbb{R}^+)$ and $\mathcal{M}_0^+(\mathbb{R}^+)$ be the classes of a.e. finite functions in $\mathcal{M}(\mathbb{R}^+)$ and $\mathcal{M}^+(\mathbb{R}^+)$, respectively. The distribution function m_f of $f \in \mathcal{M}_0(\mathbb{R}^+)$ is given by

$$m_f(\lambda) := |\{x \in \mathbb{R}^+ : |f(x)| > \lambda\}|, \quad \lambda \ge 0.$$

Two functions $f, g \in \mathcal{M}_0(\mathbb{R}^+)$ are said to be equimeasurable if $m_f(\lambda) = m_g(\lambda)$ for all $\lambda \geq 0$.

A Banach function norm $\rho: \mathcal{M}^+(\mathbb{R}^+) \to [0,\infty]$ is called rearrangement-invariant if for every pair of equimeasurable functions $f,g\in\mathcal{M}^+_0(\mathbb{R}^+)$, the equality $\rho(f)=\rho(g)$ holds. In that case, the Banach function space $X(\mathbb{R}^+)$ generated by ρ is said to be a rearrangement-invariant Banach function space (or simply a rearrangement-invariant space). Lebesgue spaces $L^p(\mathbb{R}^+)$, $1 \le p \le \infty$, Orlicz spaces $L^{\Phi}(\mathbb{R}^+)$, and Lorentz spaces $L^{p,q}(\mathbb{R}^+)$ are classical examples of rearrangement-invariant Banach function spaces (see, e.g., [2] and the references therein). By [2, Ch. 2, Proposition 4.2], if a Banach function space $X(\mathbb{R}^+)$ is rearrangement-invariant, then its associate space $X'(\mathbb{R}^+)$ is also rearrangement-invariant.

2.3. Variable Lebesgue spaces. Let $p(\cdot): \mathbb{R}^+ \to [1, \infty]$ be a measurable function called variable exponent. For a measurable function $f: \mathbb{R}^+ \to \mathbb{C}$, consider the functional:

$$\varrho_{p(\cdot)}(f):=\int_{\mathbb{R}^+\backslash\{y\in\mathbb{R}^+\,:\,p(y)=\infty\}}|f(x)|^{p(x)}dx+\operatorname*{ess\,sup}_{x\in\{y\in\mathbb{R}^+\,:\,p(y)=\infty\}}|f(x)|.$$

The variable Lebesgue space $L^{p(\cdot)}(\mathbb{R}^+)$ consists of all measurable functions $f: \mathbb{R}^+ \to \mathbb{C}$ such that $\varrho_{p(\cdot)}(f/\lambda) < \infty$ for some $\lambda = \lambda(f) > 0$. It is well known that $L^{p(\cdot)}(\mathbb{R}^+)$ is a Banach function space with respect to the Luxemburg-Nakano norm

$$||f||_{L^{p(\cdot)}(\mathbb{R}^+)} := \inf\{\lambda > 0 : \varrho_{p(\cdot)}(f/\lambda) \le 1\}$$

(see, e.g., [5, Theorem 2.71 and Section 2.10.3] and also [6, Theorem 3.2.13] for an equivalent norm). Moreover, $L^{p(\cdot)}(\mathbb{R}^+)$ is separable if and only if

$$\operatorname{ess\,sup}_{x\in\mathbb{R}^+} p(x) < \infty$$

(see, e.g., [5, Theorem 2.78]). Variable Lebesgue spaces $L^{p(\cdot)}(\mathbb{R}^+)$ are not rearrangement-invariant (see, e.g., [5, Example 3.14] for a counter-example).

2.4. Spaces $L^1(\mathbb{R}^+) \cap L^{\infty}(\mathbb{R}^+)$ and $L^1(\mathbb{R}^+) + L^{\infty}(\mathbb{R}^+)$. For a function f in the intersection $L^1(\mathbb{R}^+) \cap L^{\infty}(\mathbb{R}^+)$, let

$$||f||_{L^1(\mathbb{R}^+)\cap L^\infty(\mathbb{R}^+)} := \max\left\{||f||_{L^1(\mathbb{R}^+)}, ||f||_{L^\infty(\mathbb{R}^+)}\right\}.$$

Following [2, Ch. 2, Definition 6.1], the space $L^1(\mathbb{R}^+) + L^{\infty}(\mathbb{R}^+)$ consists of all functions $f \in \mathcal{M}_0(\mathbb{R}^+)$ that are representable as a sum f = g + h of functions $g \in L^1(\mathbb{R}^+)$ and $h \in L^{\infty}(\mathbb{R}^+)$. For each $f \in L^1(\mathbb{R}^+) + L^{\infty}(\mathbb{R}^+)$, let

$$||f||_{L^1(\mathbb{R}^+)+L^{\infty}(\mathbb{R}^+)} := \inf \{ ||g||_{L^1(\mathbb{R}^+)} + ||h||_{L^{\infty}(\mathbb{R}^+)} \},$$

where the infimum is taken over all representations f = g + h of the kind described above. In view of [2, Ch. 2, Theorem 6.4], the spaces $L^1(\mathbb{R}^+) \cap L^{\infty}(\mathbb{R}^+)$ and $L^1(\mathbb{R}^+) + L^{\infty}(\mathbb{R}^+)$ are rearrangement-invariant Banach function spaces and they are mutually associate to each other. Therefore, the following version of Hölder's inequality is an immediate consequence of [2, Ch. 1, Theorem 2.4].

Lemma 2.1. Suppose $f \in L^1(\mathbb{R}^+) \cap L^{\infty}(\mathbb{R}^+)$ and $g \in L^1(\mathbb{R}^+) + L^{\infty}(\mathbb{R}^+)$. Then $fg \in L^1(\mathbb{R}^+)$ and

$$||fg||_{L^1(\mathbb{R}^+)} \le ||f||_{L^1(\mathbb{R}^+)\cap L^\infty(\mathbb{R}^+)} ||g||_{L^1(\mathbb{R}^+)+L^\infty(\mathbb{R}^+)}.$$

The spaces $L^1(\mathbb{R}^+) \cap L^{\infty}(\mathbb{R}^+)$ and $L^1(\mathbb{R}^+) + L^{\infty}(\mathbb{R}^+)$ are the smallest and the largest spaces, respectively, among all rearrangement-invariant Banach function spaces. A similar property is also true for variable Lebesgue spaces $L^{p(\cdot)}(\mathbb{R}^+)$ with $p(\cdot) : \mathbb{R}^+ \to [1, \infty]$.

Theorem 2.2. If $X(\mathbb{R}^+)$ is a rearrangement-invariant Banach function space or a variable Lebesgue space $L^{p(\cdot)}(\mathbb{R}^+)$ with $p(\cdot): \mathbb{R}^+ \to [1, \infty]$, then

$$L^1(\mathbb{R}^+) \cap L^\infty(\mathbb{R}^+) \hookrightarrow X(\mathbb{R}^+) \hookrightarrow L^1(\mathbb{R}^+) + L^\infty(\mathbb{R}^+)$$

(here \hookrightarrow denotes the continuous embedding of corresponding Banach spaces).

For rearrangement-invariant Banach function spaces, the proof of the above theorem is contained in [2, Ch. 2, Theorem 6.6], while for variable Lebesgue spaces $L^{p(\cdot)}(\mathbb{R}^+)$ with $p(\cdot): \mathbb{R}^+ \to [1, \infty]$, its proof is given in [6, Theorem 3.3.11] (see also [5, Theorem 2.51]).

2.5. **Lerch's theorem.** The proof of the following result, usually attributed to Lerch, can be found, e.g., in [22, Section 6.5, Corollary 5.1] or [11, Section 3.5.8].

Theorem 2.3. If $\varphi \in L^1(0,1)$ and

$$\int_0^1 \varphi(t)t^n dt = 0 \quad \text{for all} \quad n \in \mathbb{N} \cup \{0\},$$

then $\varphi = 0$.

2.6. Stirling's formula. We will use Stirling's formula in the following form.

Lemma 2.4 ([16]). For all $n \in \mathbb{N}$,

$$\sqrt{2\pi n} \left(\frac{n}{e}\right)^n \exp\left(\frac{1}{12n+1}\right) < n! < \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \exp\left(\frac{1}{12n}\right).$$

3. Proof of the main result

3.1. The system Φ_{λ} is contained in $L^{1}(\mathbb{R}^{+}) \cap L^{\infty}(\mathbb{R}^{+})$.

Lemma 3.1. Let $\lambda > 0$ and

$$g_{n,\lambda}(x) := (\lambda x)^n e^{-\lambda x/2}, \quad x \in \mathbb{R}^+, \quad n \in \mathbb{N} \cup \{0\}.$$
 (3.1)

Then

$$||g_{n,\lambda}||_{L^1(\mathbb{R}^+)\cap L^\infty(\mathbb{R}^+)} \le C_\lambda 2^{n+1} n!, \tag{3.2}$$

where

$$C_{\lambda} := \max \left\{ \frac{1}{\lambda}, \frac{1}{2\sqrt{2\pi}} \right\}.$$

Consequently, $\Phi_{\lambda} \subset L^1(\mathbb{R}^+) \cap L^{\infty}(\mathbb{R}^+)$.

Proof. Since

$$g'_{n,\lambda}(x) = \lambda^n x^{n-1} e^{-\lambda x/2} \left(n - \frac{\lambda x}{2} \right),$$

we have

$$||g_{n,\lambda}||_{L^{\infty}(\mathbb{R}^+)} = \sup_{x \in \mathbb{R}^+} g_{n,\lambda}(x) = g\left(\frac{2n}{\lambda}\right) = 2^n \left(\frac{n}{e}\right)^n.$$
 (3.3)

On the other hand,

$$||g_{n,\lambda}||_{L^{1}(\mathbb{R}^{+})} = \int_{0}^{\infty} (\lambda x)^{n} e^{-\lambda x/2} dx = \frac{2^{n+1}}{\lambda} \int_{0}^{\infty} t^{n} e^{-t} dt$$
$$= \frac{2^{n+1}}{\lambda} \Gamma(n+1) = \frac{2^{n+1} n!}{\lambda}. \tag{3.4}$$

Taking into account (3.3)–(3.4), with the aid of Lemma 2.4, we get

$$\begin{split} \|g_{n,\lambda}\|_{L^{1}(\mathbb{R}^{+})\cap L^{\infty}(\mathbb{R}^{+})} &= \max\left\{ \|g_{n,\lambda}\|_{L^{1}(\mathbb{R}^{+})}, \|g_{n,\lambda}\|_{L^{\infty}(\mathbb{R}^{+})} \right\} \\ &= \max\left\{ \frac{2^{n+1}n!}{\lambda}, 2^{n} \left(\frac{n}{e}\right)^{n} \right\} \\ &\leq \max\left\{ \frac{2^{n+1}n!}{\lambda}, \frac{1}{2\sqrt{2\pi n}} \exp\left(-\frac{1}{12n+1}\right) 2^{n+1}n! \right\} \\ &\leq \max\left\{ \frac{1}{\lambda}, \frac{1}{2\sqrt{2\pi}} \right\} 2^{n+1}n!, \end{split}$$

which completes the proof of (3.2). Finally, it follows from (1.1)–(1.2) that each dilated Laguerre function $\varphi_n(\lambda x)$, $n \in \mathbb{N}$, is a linear combination of functions $g_{k,\lambda}(x)$, $k \in \{0,\ldots,n\}$. Thus $\Phi_{\lambda} \subset L^1(\mathbb{R}^+) \cap L^{\infty}(\mathbb{R}^+)$.

3.2. Completeness of Φ_{λ} in $L^{1}(\mathbb{R}^{+}) + L^{\infty}(\mathbb{R}^{+})$. The following theorem extends the result on the completeness of Φ_{1} in $L^{2}(\mathbb{R}^{+})$ (see, e.g., [11, Section 4.8.3]).

Theorem 3.2. Let $\lambda > 0$. If $f \in L^1(\mathbb{R}^+) + L^{\infty}(\mathbb{R}^+)$ and

$$\int_{0}^{\infty} f(x)\varphi_{n}(\lambda x) dx = 0 \quad \text{for all} \quad n \in \mathbb{N},$$
 (3.5)

then f = 0.

Proof. The proof is analogous to that one given in [11, Section 4.8.3, pp. 165-166]. It follows from (1.1) that for every $n \in \mathbb{N} \cup \{0\}$ and $x \in \mathbb{R}^+$,

$$[L_0(x) L_1(x) \dots L_n(x)]^T = A[x^0 x^1 \dots x^n]^T$$

where B^T denotes the transpose of a matrix B and

$$A := \begin{bmatrix} \binom{0}{0} \frac{1}{0!} & 0 & 0 & \ddots & 0 & 0 \\ \binom{1}{0} \frac{1}{0!} & \binom{1}{1} \frac{(-1)}{1!} & 0 & \ddots & 0 & 0 \\ \binom{2}{0} \frac{1}{0!} & \binom{2}{1} \frac{(-1)}{1!} & \binom{2}{2} \frac{1}{2!} & \ddots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \binom{n-1}{0} \frac{1}{0!} & \binom{n-1}{1} \frac{(-1)}{1!} & \binom{n-1}{2} \frac{1}{2!} & \dots & \binom{n-1}{n-1} \frac{(-1)^{n-1}}{(n-1)!} & 0 \\ \binom{n}{0} \frac{1}{0!} & \binom{n}{1} \frac{(-1)}{1!} & \binom{n}{2} \frac{1}{2!} & \dots & \binom{n}{n-1} \frac{(-1)^{n-1}}{(n-1)!} & \binom{n}{n} \frac{(-1)^n}{n!} \end{bmatrix}$$

Since

$$\det A = \prod_{k=0}^{n} \frac{(-1)^k}{k!} \neq 0,$$

we see that A is invertible and

$$[x^0 \ x^1 \ \dots \ x^n]^T = A^{-1}[L_0(x) \ L_1(x) \ \dots \ L_n(x)]^T,$$

whence x^n can be expressed as a linear combination of $L_0(x), L_1(x), \ldots, L_n(x)$. Therefore, (3.5) implies that

$$\int_0^\infty f(x)g_{n,\lambda}(x) dx = 0 \quad \text{for all} \quad n \in \mathbb{N},$$
 (3.6)

where the functions $g_{n,\lambda}$, $n \in \mathbb{N} \cup \{0\}$ are given by (3.1). Consider

$$h_{\lambda}(x) := f(x)e^{-\lambda x/2} = f(x)g_{0,\lambda}(x), \quad x \in \mathbb{R}^+.$$

Then (3.6) yields

$$\int_0^\infty h_\lambda(x)x^n dx = 0 \quad \text{for all} \quad n \in \mathbb{N} \cup \{0\}.$$
 (3.7)

It follows from Lemmas 2.1 and 3.1 that $h_{\lambda} \in L^1(\mathbb{R}^+)$. Then its Laplace transform

$$H_{\lambda}(z) := \int_{0}^{\infty} h_{\lambda}(x)e^{-zx}dx$$

exists for $\operatorname{Re} z \geq 0$ and is analytic in the domain $\operatorname{Re} z > 0$ (see, e.g., [1, Theorem 12.8]).

Let $y \geq 0$. Expanding e^{-yx} in the Maclaurin series, we get

$$H_{\lambda}(y) = \int_{0}^{\infty} h_{\lambda}(x) \left(\sum_{n=0}^{\infty} \frac{(-yx)^{n}}{n!} \right) dx.$$

We are going to justify the interchange of order of integration and summation in the above integral. We will show that the series $\sum_{n=0}^{\infty} a_{n,\lambda} y^n$ converges absolutely in $(-R_{\lambda}, R_{\lambda})$ for some $R_{\lambda} \in (0, +\infty)$, where

$$a_{n,\lambda} := \frac{1}{n!} \int_0^\infty |h_{\lambda}(x)| x^n \, dx = \frac{1}{\lambda^n n!} \int_0^\infty |f(x)| g_{n,\lambda}(x) \, dx, \quad n \in \mathbb{N} \cup \{0\}.$$

Indeed, it follows from Lemmas 2.1 and 3.1 that for all $n \in \mathbb{N} \cup \{0\}$,

$$a_{n,\lambda} \le \frac{1}{\lambda^n n!} \|f\|_{L^1(\mathbb{R}^+) + L^{\infty}(\mathbb{R}^+)} \|g_{n,\lambda}\|_{L^1(\mathbb{R}^+) \cap L^{\infty}(\mathbb{R}^+)}$$
$$\le C_{\lambda} \|f\|_{L^1(\mathbb{R}^+) + L^{\infty}(\mathbb{R}^+)} \frac{2^{n+1}}{\lambda^n} =: b_{n,\lambda}.$$

Hence the radius of convergence R_{λ} of the series $\sum_{n=0}^{\infty} a_{n,\lambda} y^n$ is not less than the radius of convergence of the series $\sum_{n=0}^{\infty} b_{n,\lambda} y^n$, which is equal to $\lambda/2$. Hence, for $0 \le y < \lambda/2$,

$$\sum_{n=0}^{\infty} \frac{1}{n!} \left(\int_0^{\infty} |h_{\lambda}(x)| x^n \, dx \right) y^n < \infty.$$

In this case, the Tonelli and Fubini theorems (see, e.g., [3, Ch. 4, Theorems 3.1–3.2]) imply that for $0 \le y < \lambda/2$, one has

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \left(\int_0^{\infty} h_{\lambda}(x) x^n \, dx \right) y^n = \int_0^{\infty} h_{\lambda}(x) \left(\sum_{n=0}^{\infty} \frac{(-yx)^n}{n!} \right) dx = H_{\lambda}(y). \quad (3.8)$$

It follows from (3.7) and (3.8) that $H_{\lambda}(y) = 0$ for $y \in [0, \lambda/2)$. Since $H_{\lambda}(z)$ is analytic for Re z > 0, by the identity theorem for analytic functions (see, e.g., [23, Theorem 8.12]), we conclude that $H_{\lambda}(y) = 0$ for all $y \in [0, \infty)$, that is,

$$\int_0^\infty h_\lambda(x)e^{-yx}dx = 0, \quad y \ge 0.$$

By employing the substitution $x = -\ln t$, we can rewrite this as

$$\int_0^1 h_{\lambda}(-\ln t)t^{y-1}dt = 0, \quad y \ge 0.$$

In particular,

$$\int_0^1 h_{\lambda}(-\ln t)t^{n-1}dt = 0, \quad n \in \mathbb{N}.$$

By Lerch's theorem (see, Theorem 2.3), $h_{\lambda}(-\ln t) = 0$ for a.e. $t \in (0,1)$, that is, $h_{\lambda}(x) = 0$ for a.e. $x \in \mathbb{R}^+$. Finally, this implies that f = 0.

3.3. **Proof of Theorem 1.1.** It follows from Lemma 3.1 and the hypotheses of the theorem that

$$\Phi_{\lambda} \subset L^{1}(\mathbb{R}^{+}) \cap L^{\infty}(\mathbb{R}^{+}) \subset X(\mathbb{R}^{+}), \tag{3.9}$$

where $\Phi_{\lambda} = \{\varphi_{1,\lambda}, \varphi_{2,\lambda}, \dots\}$ and

$$\varphi_{n,\lambda}(x) := \varphi_n(\lambda x), \quad x \in \mathbb{R}^+, \quad n \in \mathbb{N},$$

are dilated Laguerre functions. Then [2, Ch. 1, Theorem 1.8] yields

$$L^1(\mathbb{R}^+) \cap L^\infty(\mathbb{R}^+) \hookrightarrow X(\mathbb{R}^+).$$
 (3.10)

Since $L^1(\mathbb{R}^+) + L^{\infty}(\mathbb{R}^+)$ is the associate space of $L^1(\mathbb{R}^+) \cap L^{\infty}(\mathbb{R}^+)$, the continuous embedding in (3.10) and [2, Ch. 1, Proposition 2.10] imply that

$$X'(\mathbb{R}^+) \hookrightarrow L^1(\mathbb{R}^+) + L^{\infty}(\mathbb{R}^+). \tag{3.11}$$

Let $G \in X^*(\mathbb{R}^+)$ be such that

$$G\varphi_{n,\lambda} = 0 \quad \text{for all} \quad n \in \mathbb{N}.$$
 (3.12)

Since $X(\mathbb{R}^+)$ is separable, it follows from [2, Ch. 1, Corollaries 4.3 and 5.6] that the Banach dual $X^*(\mathbb{R}^+)$ of $X(\mathbb{R}^+)$ is canonically isometrically isomorphic to the associate space $X'(\mathbb{R}^+)$ of $X(\mathbb{R}^+)$. Therefore, there is a unique function $g \in X'(\mathbb{R}^+)$ such that

$$Gf = \int_0^\infty f(x)g(x) dx \quad \text{for all} \quad f \in X(\mathbb{R}^+).$$
 (3.13)

It follows from (3.9) and (3.12)–(3.13) that

$$\int_{0}^{\infty} g(x)\varphi_{n}(\lambda x) dx = 0 \quad \text{for all} \quad n \in \mathbb{N}.$$
 (3.14)

Since $g \in L^1(\mathbb{R}^+) + L^{\infty}(\mathbb{R}^+)$, Theorem 3.2 and (3.14) imply that g = 0. Therefore, it follows from (3.13) that G = 0.

So, we have proved that if $G \in X^*(\mathbb{R}^+)$ satisfies (3.12), then G = 0. By a corollary of the Hahn-Banach theorem (see, e.g., [3, Ch. 7, Theorem 4.2]), the above fact is equivalent to the density of the linear span of Φ_{λ} in $X(\mathbb{R}^+)$.

3.4. Corollary of the main result for rearrangement-invariant Banach function spaces and variable Lebesgue spaces.

Corollary 3.3. Let $\lambda > 0$. If $X(\mathbb{R}^+)$ is either a separable rearrangement-invariant Banach function space or a separable variable Lebesgue space, then the linear span of Φ_{λ} is dense in $X(\mathbb{R}^+)$.

This result follows immediately form Theorems 1.1 and 2.2.

Acknowledgment. We would like to thank the anonymous referee for useful remarks, which helped us to improve the presentation.

References

- R. J. Beerends, H. G. ter Morsche, J. C. van den Berg, and E. M. van de Vrie, Fourier and Laplace transforms, Cambridge University Press, Cambridge, 2003. https://doi.org/10.1017/CBO9780511806834
- [2] C. Bennett and R. Sharpley, Interpolation of operators, Academic Press, Inc., Boston, MA, 1988. https://www.elsevier.com/books/interpolation-of-operators/bennett/978-0-12-088730-
- [3] Y. M. Berezansky, Z. G. Sheftel, and G. F. Us, Functional analysis. Vol. I, Birkhäuser Verlag, Basel, 1996. https://link.springer.com/book/10.1007/978-3-0348-9185-1

- [4] A. Böttcher and B. Silbermann, Analysis of Toeplitz operators, Springer-Verlag, Berlin, 2006. https://link.springer.com/book/10.1007/3-540-32436-4
- [5] D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces, Birkhäuser/Springer, Heidelberg, 2013. https://doi.org/10.1007/978-3-0348-0548-3
- [6] L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Springer, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-18363-8
- [7] R. Duduchava, Integral equations with fixed singularities, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1979.
- [8] J. Duoandikoetxea, The bilinear Hilbert transform acting on Hermite and Laguerre functions,
 J. Approx. Theory 162 (2010), 131–140. https://doi.org/10.1016/j.jat.2009.03.009
- [9] C.-I. Gheorghiu, Spectral methods for non-standard eigenvalue problems, Springer, Cham, 2014. https://doi.org/10.1007/978-3-319-06230-3
- [10] I. C. Gohberg and I. A. Fel'dman, Convolution equations and projection methods for their solution, American Mathematical Society, Providence, R.I., 1974. https://bookstore.ams.org/mmono-41/
- [11] S. Kaczmarz and H. Steinhaus, Theory of orthogonal series, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1958 (in Russian).
- [12] Y. I. Karlovich and J. Loreto Hernández, Wiener-Hopf operators with slowly oscillating matrix symbols on weighted Lebesgue spaces, Integral Equations Operator Theory 64 (2009), 203–237. https://doi.org/10.1007/s00020-009-1685-y
- [13] A. N. Kolmogorov and S. V. Fomin, Elements of the theory of functions and functional analysis, FIZMATLIT, Moscow, 2004 (in Russian).
- [14] N. N. Lebedev, Special functions and their applications, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965.
- [15] N. Nikolski, Toeplitz matrices and operators, Cambridge University Press, Cambridge, 2020. https://www.cambridge.org/9781107198500
- [16] H. Robbins, A remark on Stirling's formula, Amer. Math. Monthly 62 (1955), 26–29. https://doi.org/10.2307/2308012
- [17] J. Shen, Stable and efficient spectral methods in unbounded domains using Laguerre functions SIAM J. Numer. Anal. 38 (2000), 1113–1133. https://doi.org/10.1137/S0036142999362936
- [18] G. Szegő, Orthogonal polynomials, American Mathematical Society, Providence, R.I., 1975. https://bookstore.ams.org/coll-23/
- [19] S. Thangavelu, Lectures on Hermite and Laguerre expansions, Princeton University Press, Princeton, NJ, 1993. https://press.princeton.edu/books/ebook/9780691213927/lectures-on-hermite-and-laguerre-expansions-mn-42-volume-42
- [20] K. Trimèche, Generalized wavelets and hypergroups, Gordon and Breach Science Publishers, Amsterdam, 1997. https://doi.org/10.1201/9780203753712
- [21] N. J. Vilenkin, Special functions and theory of group representations, Nauka, Moscow, 1965 (in Russian).
- [22] D. V. Widder, An introduction to transform theory, Academic Press, New York, 1971. https://www.elsevier.com/books/an-introduction-to-transform-theory/widder/978-0-08-087355-8
- [23] I. F. Wilde, Lecture notes on complex analysis, Imperial College Press, London, 2006. https://doi.org/10.1142/p442

CLÁUDIO FERNANDES, OLEKSIY KARLOVYCH, MÁRCIO VALENTE

Centro de Matemática e Aplicações (NovaMath) and Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829–516 Caparica. Portugal

 $E ext{-}mail\ address: caf@fct.unl.pt, oyk@fct.unl.pt, mac.valente@campus.fct.unl.pt}$