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ON THE DENSITY OF LAGUERRE FUNCTIONS

IN SOME BANACH FUNCTION SPACES

CLÁUDIO FERNANDES, OLEKSIY KARLOVYCH, AND MÁRCIO VALENTE

Abstract. Let λ > 0 and Φλ := {ϕ1,λ, ϕ2,λ, . . . } be the system of dilated

Laguerre functions. We show that if L1(R+) ∩ L∞(R+) is embedded into a

separable Banach function space X(R+), then the linear span of Φλ is dense
in X(R+). This implies that the linear span of Φλ is dense in every sepa-

rable rearrangement-invariant space X(R+) and in every separable variable

Lebesgue space Lp(·)(R+).

1. Introduction

For n ∈ N ∪ {0}, the n-th Laguerre polynomial is defined by

Ln(x) :=
ex

n!

dn

dxn
(xne−x) =

n∑
k=0

(
n

k

)
(−1)k

k!
xk, x ∈ R (1.1)

(see, e.g., [18, Section 5.1]). It is well known that the system of Laguerre functions
Φ := {ϕ1, ϕ2, . . . } defined by

ϕn(x) := Ln−1(x)e−x/2, x ∈ R, n ∈ N, (1.2)

is an orthonormal system in L2(R+), that is,∫ ∞
0

ϕn(x)ϕm(x) dx =

{
1, n = m,
0, n 6= m

(see, e.g., [11, Section 4.8.2]). Moreover, it is complete in L2(R+), that is, if g ∈
L2(R+) and ∫ ∞

0

ϕn(x)g(x) dx = 0 for all n ∈ N,

then g(x) = 0 for almost every x ∈ R+ (see, e.g., [11, Section 4.8.3] or [13, Ch. VIII,
§4.3]).
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The system of Laguerre functions or its modifications arise in many areas of
mathematics (see, e.g., [8], [9, Ch. 4], [14, Ch. 4], [17], [19], [20, Ch. 8], [21, Ch. VIII,
§ 5], to mention just a few works, where Laguerre functions play an important role).
Our motivations come from the theory of Wiener-Hopf operators

(Wf)(x) :=

∫ ∞
0

k(x− y)f(y) dy

on Lebesgue spaces Lp(R+), 1 < p < ∞, where the system of dilated Laguerre
functions Φ2 := {ϕ1,2, ϕ2,2, . . . } with ϕn,2(x) = ϕn(2x) for x ∈ R+ and n ∈ N,
arises naturally (see, e.g., [7, Ch. I, Section 3], [10, Ch. I, §8.3], [15, Sections 4.2–
4.3]). In particular, the density of the linear span of Φ2 in Lp(R+) for 1 < p < ∞
plays a crucial role in the proof of the fact that the Banach algebra alg(W (C(Ṙ))
generated by Wiener-Hopf operators with continuous symbols contains all compact
operators on Lp(R+) (see, [4, Section 9.9] and also [12, Lemmas 5.2–5.3]).

The aim of this paper is to prove that for every λ > 0 the linear span of the
system of dilated Laguerre functions

Φλ := {ϕ1(λx), ϕ2(λx), . . . }

is dense in a separable Banach function space X(R+) under a natural additional
assumption that L1(R+) ∩ L∞(R+) is embedded into X(R+). We postpone the
technical definition of a Banach function space to Section 2.1 (see also [2, Ch. 1] for
a complete account on the theory of Banach function spaces). Here we only mention
that the class of Banach function spaces is very large, it contains all Lebesgue
spaces Lp(R+), all Orlicz spaces LΦ(R+), and all Lorentz spaces Lp,q(R+); which
are rearrangement-invariant (see Section 2.2 and [2, Ch. 2]); as well as, all variable
Lebesgue spaces Lp(·)(R+) (see Section 2.3 and [5, 6]); which are not rearrangement-
invariant.

Theorem 1.1 (Main result). Let λ > 0. If L1(R+) ∩ L∞(R+) is embedded into
a separable Banach function space X(R+), then the linear span of Φλ is dense in
X(R+).

The paper is organized as follows. In Section 2, we recall definitions of the class of
Banach function spaces and their associate spaces, of its subclass of rearrangement-
invariant Banach function spaces, as well as, of variable Lebesgue spaces Lp(·)(R+),
which constitute a distinguished example of non-rearrangement-invariant Banach
function spaces. We pay special attention to the mutually associate rearrangement-
invariant Banach function spaces L1(R+) ∩ L∞(R+) and L1(R+) + L∞(R+). Fur-
ther, we state Lerch’s theorem and recall a suitable form of Stirling’s formula.

In Section 3, we show that the system of dilated Laguerre functions Φλ is con-
tained in L1(R+) ∩ L∞(R+). Further, following the scheme of the proof of [11,
Section 4.8.3], we show that Φλ is complete in L1(R+) + L∞(R+). Finally, we
prove Theorem 1.1 and state its corollary for separable rearrangement-invariant
Banach function spaces and separable variable Lebesgue spaces Lp(·)(R+).

We plan to employ the results obtained in this work to the study of Banach
algebras generated by Wiener-Hopf operators on variable Lebesgue spaces in a
forthcoming publication.

2. Preliminaries
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2.1. Banach function spaces. The set of all Lebesgue measurable extended com-
plex-valued functions on R+ is denoted by M(R+). Let M+(R+) be the subset
of functions in M(R+) whose values lie in [0,∞]. The Lebesgue measure of a
measurable set E ⊂ R+ is denoted by |E| and its characteristic function is denoted
by χE . Following [2, Ch. 1, Definition 1.1], a mapping ρ : M+(R+) → [0,∞] is
called a Banach function norm if, for all functions f, g, fn (n ∈ N) in M+(R+), for
all constants a ≥ 0, and for all measurable subsets E of R+, the following properties
hold:

(A1) ρ(f) = 0⇔ f = 0 a.e., ρ(af) = aρ(f), ρ(f + g) ≤ ρ(f) + ρ(g),

(A2) 0 ≤ g ≤ f a.e. ⇒ ρ(g) ≤ ρ(f) (the lattice property),

(A3) 0 ≤ fn ↑ f a.e. ⇒ ρ(fn) ↑ ρ(f) (the Fatou property),

(A4) |E| <∞⇒ ρ(χE) <∞,

(A5) |E| <∞⇒
∫
E

f(x) dx ≤ CEρ(f)

with CE ∈ (0,∞) which may depend on E and ρ but is independent of f . When
functions differing only on a set of measure zero are identified, the set X(R+) of all
functions f ∈M(R+) for which ρ(|f |) <∞ is called a Banach function space. For
each f ∈ X(R+), the norm of f is defined by

‖f‖X(R+) := ρ(|f |).

Under the natural linear space operations and under this norm, the set X(R+)
becomes a Banach space (see [2, Ch. 1, Theorems 1.4 and 1.6]). If ρ is a Banach
function norm, its associate norm ρ′ is defined on M+(R+) by

ρ′(g) := sup

{∫
R+

f(x)g(x) dx : f ∈M+(R+), ρ(f) ≤ 1

}
, g ∈M+(R+),

which is a Banach function norm itself [2, Ch. 1, Theorem 2.2]. The Banach function
space X ′(R+) determined by the Banach function norm ρ′ is called the associate
space (Köthe dual) of X(R+). The associate space X ′(R+) is naturally identified
with a subspace of the Banach dual space X∗(R+) (see [2, pp. 19–20]).

2.2. Rearrangement-invariant Banach function spaces. Let M0(R+) and
M+

0 (R+) be the classes of a.e. finite functions in M(R+) and M+(R+), respec-
tively. The distribution function mf of f ∈M0(R+) is given by

mf (λ) := |{x ∈ R+ : |f(x)| > λ}|, λ ≥ 0.

Two functions f, g ∈M0(R+) are said to be equimeasurable if mf (λ) = mg(λ) for
all λ ≥ 0.

A Banach function norm ρ :M+(R+)→ [0,∞] is called rearrangement-invariant
if for every pair of equimeasurable functions f, g ∈ M+

0 (R+), the equality ρ(f) =
ρ(g) holds. In that case, the Banach function space X(R+) generated by ρ is said
to be a rearrangement-invariant Banach function space (or simply a rearrangement-
invariant space). Lebesgue spaces Lp(R+), 1 ≤ p ≤ ∞, Orlicz spaces LΦ(R+), and
Lorentz spaces Lp,q(R+) are classical examples of rearrangement-invariant Banach
function spaces (see, e.g., [2] and the references therein). By [2, Ch. 2, Proposi-
tion 4.2], if a Banach function space X(R+) is rearrangement-invariant, then its
associate space X ′(R+) is also rearrangement-invariant.
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2.3. Variable Lebesgue spaces. Let p(·) : R+ → [1,∞] be a measurable function
called variable exponent. For a measurable function f : R+ → C, consider the
functional:

%p(·)(f) :=

∫
R+\{y∈R+ : p(y)=∞}

|f(x)|p(x)dx+ ess sup
x∈{y∈R+ : p(y)=∞}

|f(x)|.

The variable Lebesgue space Lp(·)(R+) consists of all measurable functions f :
R+ → C such that %p(·)(f/λ) < ∞ for some λ = λ(f) > 0. It is well known that

Lp(·)(R+) is a Banach function space with respect to the Luxemburg-Nakano norm

‖f‖Lp(·)(R+) := inf{λ > 0 : %p(·)(f/λ) ≤ 1}
(see, e.g., [5, Theorem 2.71 and Section 2.10.3] and also [6, Theorem 3.2.13] for an
equivalent norm). Moreover, Lp(·)(R+) is separable if and only if

ess sup
x∈R+

p(x) <∞

(see, e.g., [5, Theorem 2.78]). Variable Lebesgue spaces Lp(·)(R+) are not rear-
rangement-invariant (see, e.g., [5, Example 3.14] for a counter-example).

2.4. Spaces L1(R+) ∩ L∞(R+) and L1(R+) + L∞(R+). For a function f in the
intersection L1(R+) ∩ L∞(R+), let

‖f‖L1(R+)∩L∞(R+) := max
{
‖f‖L1(R+), ‖f‖L∞(R+)

}
.

Following [2, Ch. 2, Definition 6.1], the space L1(R+) + L∞(R+) consists of all
functions f ∈ M0(R+) that are representable as a sum f = g + h of functions
g ∈ L1(R+) and h ∈ L∞(R+). For each f ∈ L1(R+) + L∞(R+), let

‖f‖L1(R+)+L∞(R+) := inf
{
‖g‖L1(R+) + ‖h‖L∞(R+)

}
,

where the infimum is taken over all representations f = g+h of the kind described
above. In view of [2, Ch. 2, Theorem 6.4], the spaces L1(R+) ∩ L∞(R+) and
L1(R+) + L∞(R+) are rearrangement-invariant Banach function spaces and they
are mutually associate to each other. Therefore, the following version of Hölder’s
inequality is an immediate consequence of [2, Ch. 1, Theorem 2.4].

Lemma 2.1. Suppose f ∈ L1(R+) ∩ L∞(R+) and g ∈ L1(R+) + L∞(R+). Then
fg ∈ L1(R+) and

‖fg‖L1(R+) ≤ ‖f‖L1(R+)∩L∞(R+)‖g‖L1(R+)+L∞(R+).

The spaces L1(R+) ∩ L∞(R+) and L1(R+) + L∞(R+) are the smallest and the
largest spaces, respectively, among all rearrangement-invariant Banach function
spaces. A similar property is also true for variable Lebesgue spaces Lp(·)(R+) with
p(·) : R+ → [1,∞].

Theorem 2.2. If X(R+) is a rearrangement-invariant Banach function space or
a variable Lebesgue space Lp(·)(R+) with p(·) : R+ → [1,∞], then

L1(R+) ∩ L∞(R+) ↪→ X(R+) ↪→ L1(R+) + L∞(R+)

(here ↪→ denotes the continuous embedding of corresponding Banach spaces).

For rearrangement-invariant Banach function spaces, the proof of the above the-
orem is contained in [2, Ch. 2, Theorem 6.6], while for variable Lebesgue spaces
Lp(·)(R+) with p(·) : R+ → [1,∞], its proof is given in [6, Theorem 3.3.11] (see also
[5, Theorem 2.51]).
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2.5. Lerch’s theorem. The proof of the following result, usually attributed to
Lerch, can be found, e.g., in [22, Section 6.5, Corollary 5.1] or [11, Section 3.5.8].

Theorem 2.3. If ϕ ∈ L1(0, 1) and∫ 1

0

ϕ(t)tn dt = 0 for all n ∈ N ∪ {0},

then ϕ = 0.

2.6. Stirling’s formula. We will use Stirling’s formula in the following form.

Lemma 2.4 ([16]). For all n ∈ N,
√

2πn
(n
e

)n
exp

(
1

12n+ 1

)
< n! <

√
2πn

(n
e

)n
exp

(
1

12n

)
.

3. Proof of the main result

3.1. The system Φλ is contained in L1(R+) ∩ L∞(R+).

Lemma 3.1. Let λ > 0 and

gn,λ(x) := (λx)ne−λx/2, x ∈ R+, n ∈ N ∪ {0}. (3.1)

Then

‖gn,λ‖L1(R+)∩L∞(R+) ≤ Cλ2n+1n! , (3.2)

where

Cλ := max

{
1

λ
,

1

2
√

2π

}
.

Consequently, Φλ ⊂ L1(R+) ∩ L∞(R+).

Proof. Since

g′n,λ(x) = λnxn−1e−λx/2
(
n− λx

2

)
,

we have

‖gn,λ‖L∞(R+) = sup
x∈R+

gn,λ(x) = g

(
2n

λ

)
= 2n

(n
e

)n
. (3.3)

On the other hand,

‖gn,λ‖L1(R+) =

∫ ∞
0

(λx)ne−λx/2dx =
2n+1

λ

∫ ∞
0

tne−tdt

=
2n+1

λ
Γ(n+ 1) =

2n+1n!

λ
. (3.4)

Taking into account (3.3)–(3.4), with the aid of Lemma 2.4, we get

‖gn,λ‖L1(R+)∩L∞(R+) = max
{
‖gn,λ‖L1(R+), ‖gn,λ‖L∞(R+)

}
= max

{
2n+1n!

λ
, 2n

(n
e

)n}
≤ max

{
2n+1n!

λ
,

1

2
√

2πn
exp

(
− 1

12n+ 1

)
2n+1n!

}
≤ max

{
1

λ
,

1

2
√

2π

}
2n+1n!,
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which completes the proof of (3.2). Finally, it follows from (1.1)–(1.2) that each
dilated Laguerre function ϕn(λx), n ∈ N, is a linear combination of functions
gk,λ(x), k ∈ {0, . . . , n}. Thus Φλ ⊂ L1(R+) ∩ L∞(R+). �

3.2. Completeness of Φλ in L1(R+) +L∞(R+). The following theorem extends
the result on the completeness of Φ1 in L2(R+) (see, e.g., [11, Section 4.8.3]).

Theorem 3.2. Let λ > 0. If f ∈ L1(R+) + L∞(R+) and∫ ∞
0

f(x)ϕn(λx) dx = 0 for all n ∈ N, (3.5)

then f = 0.

Proof. The proof is analogous to that one given in [11, Section 4.8.3, pp. 165-166].
It follows from (1.1) that for every n ∈ N ∪ {0} and x ∈ R+,

[L0(x) L1(x) . . . Ln(x)]T = A[x0 x1 . . . xn]T

where BT denotes the transpose of a matrix B and

A :=



(
0
0

)
1
0! 0 0

. . . 0 0

(
1
0

)
1
0!

(
1
1

) (−1)
1! 0

. . . 0 0

(
2
0

)
1
0!

(
2
1

) (−1)
1!

(
2
2

)
1
2!

. . . 0 0

. . . . . . . . .
. . .

. . .
. . .(

n−1
0

)
1
0!

(
n−1

1

) (−1)
1!

(
n−1

2

)
1
2! . . .

(
n−1
n−1

) (−1)n−1

(n−1)! 0(
n
0

)
1
0!

(
n
1

) (−1)
1!

(
n
2

)
1
2! . . .

(
n
n−1

) (−1)n−1

(n−1)!

(
n
n

) (−1)n

n!



.

Since

detA =

n∏
k=0

(−1)k

k!
6= 0,

we see that A is invertible and

[x0 x1 . . . xn]T = A−1[L0(x) L1(x) . . . Ln(x)]T ,

whence xn can be expressed as a linear combination of L0(x), L1(x), . . . , Ln(x).
Therefore, (3.5) implies that∫ ∞

0

f(x)gn,λ(x) dx = 0 for all n ∈ N, (3.6)

where the functions gn,λ, n ∈ N ∪ {0} are given by (3.1). Consider

hλ(x) := f(x)e−λx/2 = f(x)g0,λ(x), x ∈ R+.

Then (3.6) yields ∫ ∞
0

hλ(x)xn dx = 0 for all n ∈ N ∪ {0}. (3.7)

It follows from Lemmas 2.1 and 3.1 that hλ ∈ L1(R+). Then its Laplace transform

Hλ(z) :=

∫ ∞
0

hλ(x)e−zxdx
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exists for Re z ≥ 0 and is analytic in the domain Re z > 0 (see, e.g., [1, Theo-
rem 12.8]).

Let y ≥ 0. Expanding e−yx in the Maclaurin series, we get

Hλ(y) =

∫ ∞
0

hλ(x)

( ∞∑
n=0

(−yx)n

n!

)
dx.

We are going to justify the interchange of order of integration and summation in
the above integral. We will show that the series

∑∞
n=0 an,λy

n converges absolutely
in (−Rλ, Rλ) for some Rλ ∈ (0,+∞), where

an,λ :=
1

n!

∫ ∞
0

|hλ(x)|xn dx =
1

λnn!

∫ ∞
0

|f(x)|gn,λ(x) dx, n ∈ N ∪ {0}.

Indeed, it follows from Lemmas 2.1 and 3.1 that for all n ∈ N ∪ {0},

an,λ ≤
1

λnn!
‖f‖L1(R+)+L∞(R+)‖gn,λ‖L1(R+)∩L∞(R+)

≤ Cλ‖f‖L1(R+)+L∞(R+)
2n+1

λn
=: bn,λ.

Hence the radius of convergence Rλ of the series
∑∞
n=0 an,λy

n is not less than the
radius of convergence of the series

∑∞
n=0 bn,λy

n, which is equal to λ/2. Hence, for
0 ≤ y < λ/2,

∞∑
n=0

1

n!

(∫ ∞
0

|hλ(x)|xn dx
)
yn <∞.

In this case, the Tonelli and Fubini theorems (see, e.g., [3, Ch. 4, Theorems 3.1–3.2])
imply that for 0 ≤ y < λ/2, one has

∞∑
n=0

(−1)n

n!

(∫ ∞
0

hλ(x)xn dx

)
yn =

∫ ∞
0

hλ(x)

( ∞∑
n=0

(−yx)n

n!

)
dx = Hλ(y). (3.8)

It follows from (3.7) and (3.8) that Hλ(y) = 0 for y ∈ [0, λ/2). Since Hλ(z) is
analytic for Re z > 0, by the identity theorem for analytic functions (see, e.g., [23,
Theorem 8.12]), we conclude that Hλ(y) = 0 for all y ∈ [0,∞), that is,∫ ∞

0

hλ(x)e−yxdx = 0, y ≥ 0.

By employing the substitution x = − ln t, we can rewrite this as∫ 1

0

hλ(− ln t)ty−1dt = 0, y ≥ 0.

In particular, ∫ 1

0

hλ(− ln t)tn−1dt = 0, n ∈ N.

By Lerch’s theorem (see, Theorem 2.3), hλ(− ln t) = 0 for a.e. t ∈ (0, 1), that is,
hλ(x) = 0 for a.e. x ∈ R+. Finally, this implies that f = 0. �
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3.3. Proof of Theorem 1.1. It follows from Lemma 3.1 and the hypotheses of
the theorem that

Φλ ⊂ L1(R+) ∩ L∞(R+) ⊂ X(R+), (3.9)

where Φλ = {ϕ1,λ, ϕ2,λ, . . . } and

ϕn,λ(x) := ϕn(λx), x ∈ R+, n ∈ N,
are dilated Laguerre functions. Then [2, Ch. 1, Theorem 1.8] yields

L1(R+) ∩ L∞(R+) ↪→ X(R+). (3.10)

Since L1(R+)+L∞(R+) is the associate space of L1(R+)∩L∞(R+), the continuous
embedding in (3.10) and [2, Ch. 1, Proposition 2.10] imply that

X ′(R+) ↪→ L1(R+) + L∞(R+). (3.11)

Let G ∈ X∗(R+) be such that

Gϕn,λ = 0 for all n ∈ N. (3.12)

Since X(R+) is separable, it follows from [2, Ch. 1, Corollaries 4.3 and 5.6] that
the Banach dual X∗(R+) of X(R+) is canonically isometrically isomorphic to the
associate space X ′(R+) of X(R+). Therefore, there is a unique function g ∈ X ′(R+)
such that

Gf =

∫ ∞
0

f(x)g(x) dx for all f ∈ X(R+). (3.13)

It follows from (3.9) and (3.12)–(3.13) that∫ ∞
0

g(x)ϕn(λx) dx = 0 for all n ∈ N. (3.14)

Since g ∈ L1(R+) +L∞(R+), Theorem 3.2 and (3.14) imply that g = 0. Therefore,
it follows from (3.13) that G = 0.

So, we have proved that if G ∈ X∗(R+) satisfies (3.12), then G = 0. By a
corollary of the Hahn-Banach theorem (see, e.g., [3, Ch. 7, Theorem 4.2]), the
above fact is equivalent to the density of the linear span of Φλ in X(R+). �

3.4. Corollary of the main result for rearrangement-invariant Banach
function spaces and variable Lebesgue spaces.

Corollary 3.3. Let λ > 0. If X(R+) is either a separable rearrangement-invariant
Banach function space or a separable variable Lebesgue space, then the linear span
of Φλ is dense in X(R+).

This result follows immediately form Theorems 1.1 and 2.2.

Acknowledgment. We would like to thank the anonymous referee for useful re-
marks, which helped us to improve the presentation.
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Centro de Matemática e Aplicações (NovaMath) and Departamento de Matemática,
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