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ŁOJASIEWICZ INEQUALITY IN P -MINIMAL STRUCTURES

AHMED SRHIR

Abstract. Th purpose of this paper is to extend the Łojasiewicz inequality for
functions definable in some subclass of P -minimal structures. More precisely,
we prove that the Łojasiewicz inequality holds for functions definable in p-
optimal expansions of Qp. It is also shown that the Łojasiewicz exponent is a
rational number in such p-optimal expansions.

1. Introduction

Let S be a compact semi-algebraic subset of Rn and f, g : S −→ R two continuous
semi-algebraic functions such that g−1(0) ⊂ f−1(0). The well-known Łojasiewicz
inequality in semi-algebraic geometry (see for instance [2]) states that there exist a
positive integer ρ > 1 and a constant c > 0 such that

|f(x)|ρ 6 c|g(x)| (1.1)

for all x ∈ S. It was introduced by Hörmander [15] and Łojasiewicz [18] and [19],
and has found rather striking applications in various branches of mathematics : the-
ory of ordinary and partial differential equations, dynamical systems, optimization,
and so on.

The origin of the Łojasiewicz inequality lies in the distribution theory. More
precisely, in the problem of the division of a distribution by a function posed by L.
Schwartz [23]. In the solution of this problem (in the full generality by Łojasiewicz
[18]), the main difficulty was to explain the structure of real analytic sets (i.e.
subsets of Rn described by systems of real analytic equations). From this description
of analytic sets fundamental Łojasiewicz inequality follows, which is the main fact
used in solution of the division problem.

The best exponent ρ in the Łojasiewicz inequality (1.1) i.e. the the smallest
one is called the Łojasiewicz exponent of f with respect to g on S, and denoted
by `S(f, g). It is shown that (see [10]) `S(f, g) is a rational number. Moreover,
inequality (1.1) holds with exponent `S(f, g) and some constant c > 0.
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The existence of the Łojasiewicz exponent was first established by Łojasiewicz
[19] for semi-analytic functions, and by Hironaka [14] (using the resolution of sin-
gularities) in the subanalytic context. The rationality of the Łojasiewicz expo-
nent for subanalytic functions was showed by Bochnak-Risler [1]. This result has
been adapted to the p-adic subanalytic case by Denef-Dries [7], and to the p-adic
semi-algebraic functions by Fekak-Srhir [11]. Note also that the case of real semi-
algebraic functions was treated by Fekak [10]. More generally, see [12] and [17] for
the o-minimal structures case.

The purpose of this paper is to transpose these results to the P -minimal case.
More precisely, we shall prove the Łojasiewicz inequality for definable functions in
p-optimal expansions of the field of p-adic numbers Qp.We also show the rationality
of the Łojasiewicz exponent for definable functions in such p-optimal expansions.
The arguments used in the o-minimal case are mainly the tameness and the simple
structure of their definable sets. We will adapt her those arguments to the P -
minimal case.

The content of the present paper is organized as follows. In section 2 we recall
some basic definitions and facts from P -minimality. In particular, p-optimal fields
are presented in detail as we are going to use it extensively throughout the paper.
Section 3 is devoted to the Łojasiewicz inequality. In Section 4 our second main
result (the rationality of the Łojasiewicz exponent) is stated and proved.

2. P -minimal structures

The notion of P -minimality was first introduced by D. Haskell and H-D. Macpher-
son [13] as a p-adic analogue of the notion of o-minimal structures [8]. They man-
aged to show that these structures have several similarities with the o-minimal
case. In particular, they have shown that these structures have a good notion of
dimension.

Let us first fix some notations and terminologies that will be used here. Through-
out this paper, p denotes a fixed prime number and Qp the field of p-adic numbers.

Recall that a p-valued field is a pair (K, v) with K is a field of characteristic 0
and v a valuation of K that satisfies the following conditions:
• v(p) = min

{
0 < v(x)

∣∣ x ∈ K \ {0}},
• k ' Fp (the finite field with p elements).

A p-valued field is said to be p-adically closed if it does not admit any proper
algebraic extension to a p-valued field. A p-adically closed field is also characterized
as being a Henselian p-valued fields with a Z-group value group. For example, both
the p-adic number field Qp and the p-adic algebraic numbers Q̂p are p-adically
closed fields. We denote by LMac Macintyre’s language for p-valued fields defined
by

LMac = {+,−, ·, V, (Pn)n>2, 0, 1},
where V and Pn are unary relation symbols. If K is a p-adically closed field, then
V is interpreted as its valuation ring, and for each n > 2, Pn as

K |= ∀x
(
Pn(x) ←→ ∃ y (x = yn)

)
·

A subset of Km is called semi-algebraic if it is a boolean combination of subsets of
the form

{x ∈ Km | ∃ y ∈ K, f(x) = yn},
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where f : Km −→ K is a polynomial function. The most remarkable result con-
cerning model theory of p-adically closed fields is :

Theorem 2.1 (Macintyre [20]). The theory pCF of p-adically closed fields admits
quantifier elimination in the language LMac.

Macintyre’s theorem is a powerful result and has many important consequences.
Here are some of these consequences:
• the definable subsets are precisely semi-algebraic sets.
• every p-adically closed field is elementarily equivalent to Qp.
• the theory pCF is decidable.

We refer the reader to the excellent reference [22] by A. Prestel and P. Roquette for
a generalization of this result and more details about the basic notions from model
theory of p-adically closed fields used here.

Let L̂ be any language extending LMac. We briefly recall now the definition of a
P -minimal structure (see also [13]):

Definition 2.2. Let K be an L̂-structure. We say that K is P -minimal if for
every K′ elementary equivalent to K, every definable subset of K ′ is quantifier free
definable by an LMac-formula.

Note that an L̂-structure K is called p-minimal if every definable subset of K
is quantifier free definable by an LMac-formula. Recall that a function f : X ⊆
Km −→ K is said to be definable if its graph {(x, f(x)) | x ∈ X} is definable.

Example 2.1. 1) Every p-adically closed field is P -minimal (Macintyre’s theo-
rem).

2) Let Lan denote the language LMac enriched with the field inverse −1 (with
0−1 = 0), and for each convergent power series f : Zmp −→ Qp, a function
symbol for the restricted analytic function from Qmp to Qp defined by

x 7−→

{
f(x) if x ∈ Zmp ,
0 otherwise.

Then the Lan-structure Qp is P -minimal (see [9] for more details).

In view of the similarity between o-minimality and P -minimality, it is natural to
ask whether any P -minimal structure admits cell decomposition as in the o-minimal
case. This question was already raised in [13]. A first partial answer was given by
Mourgues in [21], where she proved the following result :

Theorem 2.3 (Mourgues [21]). Let (K, L̂) be a P -minimal field. Then the follow-
ing properties are equivalent:

1) (K, L̂) admits cell decomposition;
2) (K, L̂) admits definable Skolem functions.

Recall that a structure M has definable Skolem functions if for every defin-
able subset X ⊆ Mm+1, there is a definable function g : π(X) −→ M such that
(x, g(x)) ∈ X for all x ∈ π(X), where π : Mm+1 −→ Mm is the projection map.
We also say that M admits definable selection or admits definable choice. Note that
an example of a P -minimal structure without definable Skolem functions was given
later by Cubides Kovacsics-Nguyen [5].



ŁOJASIEWICZ INEQUALITY IN P -MINIMAL STRUCTURES 19

One way to deal with this lack of the existence of cell decomposition theorem
is to introduce a more restrictive notion of P -minimality (explicitly by adding the
existence of definable Skolem functions as a condition). An example of this approach
is the recent attempt of Darnière-Halupczok [6], who suggest a notion of so-called
p-optimal structures.

Let us first recall that a function f : Km −→ K is said to be basic if it is
polynomial in the variable xm with coefficients which are global definable functions
in (x1, . . . , xm−1). A subset of Km is called basic if it is a boolean combination of
subsets of the form

{x ∈ Km | ∃ y ∈ K, f(x) = yn},
where f : Km −→ K is a basic function. We can now give the definition of p-optimal
field (as introduced in [6]) :

Definition 2.4. Let (K, L̂) be an expansion of a p-adically closed field K. We say
that K is p-optimal if for each m > 1, every definable subset of Km is a finite
boolean combination of basic sets.

Example 2.2. 1) Every p-adically closed field is p-optimal.
2) The Lan-structure Qp is p-optimal.

They also managed to give the following characterization of p-optimal fields :

Theorem 2.5 (Darnière-Halupczok [6]). Let (K, L̂) be an expansion of a p-adically
closed field K. Then the following properties are equivalent:

1) (K, L̂) is p-optimal;
2) (K, L̂) admits Denef’s cell decomposition;
3) (K, L̂) is P -minimal and admits definable Skolem functions.

In what follows, (Qp, L̂) denotes a fixed p-optimal field. Recall that a subset
is said to be locally closed if it is the intersection of an open and a closed subset.
Then we have:

Proposition 2.6. Let D be a locally closed definable subset of Qmp . Then there is
a definable homeomorphism from D onto a closed definable subset of Qm+1

p .

Proof. The proof of Bochnak, Coste and Roy in the real case can easily be adapted
here. (For more details see Proposition 2.2.9 of [2] pp. 29-30). �

Now here is another result which will be very useful afterwards :

Theorem 2.7. Let D be a closed and bounded definable set of Qmp and f : D −→ Qp
a continuous definable function. Then f(D) is a closed and bounded definable subset
of Qp.

Proof. The proof is of course easy since Heine-Borel Theorem holds for Qp. Nev-
ertheless, we give another proof which can be generalized for any p-adically closed
field, and based on the existence of P -minimal monotonicity theorem [16] and de-
finable Skolem functions in p-optimal fields. It is adapted from the o-minimal case
(see for instance Lemma 1.9 of [8] p. 95; see also Theorem 3.4 of [3] pp. 26-27). To
obtain a contradiction, suppose that

∀ t ∈ Qp, ∃x ∈ D, |f(x)|p > |t|p ·
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By definable choice, there is a definable map g : Qp −→ D such that |f(g(t))|p > |t|p
for all t in Qp. Since D is closed and bounded definable set it follows from the p-adic
local monotonicity theorem (see Theorem 1.10 of [16]), applied to them coordinates
of g, that there is a definable set A of Qp such that lim|t|p→+∞ g|A(t) = x exists
and belongs to D. So f(x) = f( lim

|t|p→+∞
g|A(t)) = lim

|t|p→+∞
f(g|A(t)), but the last

limit cannot exist in Qp, since |f(g(t))|p > |t|p for all t. Contradiction. �

Remark 2.8. Note that contrary to the o-minimal case, it is shown in [6] (Lemma
4.3 p. 11) that every P -minimal expansion of Qp is polynomially bounded. That
is, for every definable function f : Qp −→ Qp, there is M > 0 and non-zero integer
d and such that

|f(x)|p 6 |x|
d
p

for all |x|p > M, where |.|p denotes the p-dic norm on Qp. More generally, Cubides
Kovacsics and Delon have shown in [4] that every P -minimal field is polynomially
bounded.

3. Łojasiewicz inequality

In the rest of the paper we work in a fixed but arbitrary p-optimal expansion
(Qp, L̂) of the p-adically closed field Qp. Recall that if x = (x1, . . . , xm) ∈ Qmp , then
‖x‖p will denote the maximum norm of x. That is, ‖x‖p = max{|x1|p , . . . , |xm|p}.

The following proposition shows that the growth of a continuous definable func-
tion with values in Qp is bounded by a polynomial :

Proposition 3.1. Let D be a closed definable subset of Qmp and f : D −→ Qp a
continuous definable function. Then there exist a positive integer d and c > 0 such
that for all x ∈ D

|f(x)|p 6 c(1 + ‖x‖2
p)
d·

Proof. Let us put for r ∈ Qp,

Dr = {x ∈ D : ‖x‖p = |r|p}·

Then Dr is a bounded and closed definable subset of Qmp . According to Theorem
2.7, we can define a function θ : Qp −→ |Qp|p by

θ(r) =
{

sup{|f(x)|p : x ∈ Dr} if Dr 6= ∅,
0 otherwise.

The function θ is definable since its graph is given by{
(r, t) ∈ Qp × |Qp| :

(
∃x ∈ Dr, |t|p = |f(x)|p and ∀ y ∈ Dr, |f(y)|p 6 |t|p

)
or (Dr = ∅ and t = 0)

}
·

Therefore there exist a positive integer d and a constant M > 0 such that

|θ(r)|p 6 |r|
d
p

for all |r|p > M. Let c0 = sup{|θ(r)|p : |r|p 6 M} and c = max{1, c0}. It follows
that

|f(x)|p 6 c(1 + ‖x‖2
p)
d

for all x ∈ D. This completes the proof. �
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Proposition 3.2. Let D be a locally closed definable subset of Qmp and f : D −→ Qp
a continuous definable function. Let g : {x ∈ D : f(x) 6= 0} −→ Qp be a continuous
definable function. Then there exists a positive integer d > 1 such that the function
x 7−→ fd(x)g(x) can be continuously extended to D by 0 when f(x) = 0.

Proof. According to Proposition 2.6, we may assume that D is a closed definable
subset of Qmp . For x ∈ D and t ∈ Q∗p, consider

Dx,t =
{
y ∈ D : ‖y − x‖p 6 1 and |tf(y)|p = 1

}
·

Then Dx,t is a bounded and closed definable subset of Qmp . Let us define

θ(x, t) =

sup
{
|g(y)|p : y ∈ Dx,t

}
if Dx,t 6= ∅,

0 otherwise.

The function θ : D×Q∗p −→ Qp is well-defined and definable. Let x0 ∈ D such that
f(x0) = 0. Then there is a positive integer k (independent of x0 by a compactness
argument) and r(x0) > 0 such that

|θ(x0, t)|p 6 |t|
k
p

for all |t|p > r(x0). This means that

|f(y)|kp |g(y)|p 6 1 on
{
y ∈ D : f(y) 6= 0 and ‖y − x0‖p 6 1

}
for |f(y)|p sufficiently small. The function fk+1g, extended by 0, is thus continuous
at x0. This is precisely the assertion of the proposition. �

Theorem 3.3. Let D be a locally closed definable subset of Qmp and f, g : D −→ Qp
two continuous definable functions such that g−1(0) ⊂ f−1(0). Then there exist a
positive integer d > 1 and a continuous definable function h : D −→ Qp such that
fd = hg on D.

Proof. The function 1/g is continuous definable on {x ∈ D : f(x) 6= 0} . By Propo-
sition 3.2, there exists a positive integer d > 1 such that the function h : D 7−→ Qp
defined by

h(x) =
{
fd(x)
g(x) if f(x) 6= 0,

0 otherwise.

is continuous, definable and fd = hg on D. �

As a corollary one gets the Łojasiewicz inequality (which is the first main result):

Corollary 3.4 (Łojasiewicz inequality). Let D be a closed and bounded definable
subset of Qmp and f, g : D −→ Qp two continuous definable functions such that
g−1(0) ⊂ f−1(0). Then there exist a positive integer d > 1 and c > 0 such that for
any x ∈ D

|f(x)|dp 6 c |g(x)|p ·

Proof. We use theorem 3.3 with c = sup
{
|h(x)|p : x ∈ D

}
. �
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Corollary 3.5. Let D be a closed and bounded definable subset of Qmp and f : D −→
Qp a continuous definable function. Then there exist a positive integer d > 1 and
c > 0 such that for any x ∈ D

|f(x)|dp 6 cd(x, f−1(0))·

4. Łojasiewicz exponent

Note that since (Qp, L̂) satisfies the extreme value propery of [6], its field of
exponents is the rational numbers field Q. That is, for every definable function
f : Qp −→ Qp (which is not identically nul for all sufficiently large |x|p), there exist
a positive real number c and q ∈ Q such that

|f(x)|p ∼ c |x|
q
p

for |x|p sufficiently large. Here are some examples:

Example 4.1. 1) The p-optimal field (Qp,LMac).
2) The p-optimal field (Qp,Lan).

According to Corollary 3.4, we can state the following definition:

Definition 4.1. LetD ⊂ Qmp be a closed and bounded definable set and f, g : D −→
Qp two continuous definable functions such that g−1(0) ⊂ f−1(0). The Łojasiewicz
exponent of f with respect to g on D, denoted by `D(f, g), is defined as

`D(f, g) = inf
{
θ > 0 : |f(x)|θp 6 c |g(x)|p for some c > 0 and all x ∈ D

}
·

The next theorem shows the rationality of the Łojasiewicz exponent for definable
functions defined over definable bounded and closed subsets:

Theorem 4.2. Let D ⊂ Qmp be a closed and bounded definable set and f, g : D −→
Qp two continuous definable functions such that g−1(0) ⊂ f−1(0). Then the Ło-
jasiewicz exponent `D(f, g) of f with respect to g on D is a rational number. More-
over, if `D(f, g) 6= 0 then there exists a constant c > 0 such that the Łojasiewicz
inequality

|f(x)|`D(f,g)
p 6 c |g(x)|p

holds for all x ∈ D.

Proof. For v ∈ Qp, let us put Dv = {x ∈ D : |f(x)|p = |v|p}· Define ρ : Qp −→ Qp
by

ρ(v) =
{

inf
{
|g(x)|p : x ∈ Dv

}
if Dv 6= ∅,

1 otherwise.
Now consider the subset ∆ of Q2

p defined by

∆ =
{

(v, w) ∈ Qp ×Qp : |w|p = |ρ(v)|p
}
·

It is easy to see that ∆ is a definable subset of Q2
p. Since (Qp, L̂) admits definable

Skolem functions, there exists a definable function h : Qp −→ Qp such that

|h(v)|p = inf
x∈D

|f(x)|p=|x|p

|g(x)|p ·
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Since the field of exponents of (Qp, L̂) is Q, there exist a rational number r/q ∈ Q
and a constant c0 > 0 such that

|h(v)|p ∼ c0 |v|
r
q
p as |v|p → 0. (∗)

From (∗), it follows that
|h(v)|p >

c0

2 |v|
r
q
p

for |v|p going to 0. This last inequality gives

|g(x)|p >
c0

2 |f(x)|
r
q
p .

for |f(x)|p going to 0. This means that for some δ > 0 sufficiently small, we have

|f(x)|
r
q
p 6

2
c0
|g(x)|p (4.1)

for |f(x)|p < δ. Notice that 0 < r/q, by continuity of f and g on the bounded and
closed definable set D and using theorem 2.7. Moreover, g(x) does not vanish for
|f(x)|p > δ since g−1(0) ⊂ f−1(0). It follows that the function x 7→ f(x)

r
q /g(x) is

continuous on the bounded and closed definable subset {x ∈ D | |f(x)|p > δ}. By
theorem 2.7, there is c1 > 0 such that

|f(x)|
r
q
p 6 c1 |g(x)|p (4.2)

for |f(x)|p > δ. Let c = max{2/c0, c1}. Then combining the inequalities (4.1) and
(4.2), we get

|f(x)|
r
q
p 6 c |g(x)|p

for all x ∈ D. Therefore
`D(f, g) 6 r

q
·

On the other hand, assume that `D(f, g) 6= 0 and let θ > 0 such that the inequality

|f(x)|θp 6 c
′
0 |g(x)|p

holds for some constant c′0 > 0 and all x ∈ D. From this last inequality, we deduce
that

|v|θp 6 c
′
0 |h(v)|p

for |v|p going to 0. Now using (∗) once again, we can find a constant c′1 > 0 such
that

|h(v)|p 6 c
′
1 |v|

r
q
p

for |v|p going to 0. Combining these two last inequalities, we conclude that |v|θp 6
c′0c
′
1 |v|

r
q
p for |v|p going to 0. A passage to the limit as |v|p → 0 in this last inequality

implies that r/q 6 θ.Hence r/q 6 `D(f, g). This completes the proof of the theorem.
�

Remark 4.3. Note that our results still hold true in p-optimal expansions of an
arbitrary p-adically closed field K provided that they satisfy the extreme value
propery of [6]. We have to pay attention that when working with general p-adically
closed fields, it is possible that the value group |K×|p (considered as a multiplicative
group) is not contained in R×. In this case the Łojasiewicz exponent for example
can still be defined as in 4.1, the only difference being that θ will be elements of
|K×|p rather than R×+.
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