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GENERALIZED MULTIVARIATE PRABHAKAR TYPE
FRACTIONAL INTEGRALS AND INEQUALITIES

GEORGE A. ANASTASSIOU

ABSTRACT. We introduce here the mixed generalized multivariate Prabhakar
type left and right fractional integrals and study their basic properties, such as
preservation of continuity and their boundedness as positive linear operators.
Then we produce an interesting variety of related multivariate left and right
fractional Hardy type inequalities under convexity. We introduce also other
related multivariate fractional integrals.

1. BACKGROUND

This work is inspired by [6], [8], [9], [I1] - [15].
Here we consider the Prabhakar function (also known as the three parameter
Mittag-Leffler function, an entire function if z € C), (see [5], p. 97; [4])

Bap (2) = ,;) FT ((3111 B (1)

where T' is the gamma function; o, 5,7 € R : a,8 > 0, z € R, and (y), =
YOy 1) (v +k=1). Ttis EY 5(2) = ﬁ

Let a,b € R, a < b and z € [a,b]; f € C([a,b]). Let also v € C! ([a,b]) which
is increasing. In [3] we defined and studied the left and right Prabhakar fractional
integrals with respect to 1 as follows:

(Foacd) @ = [ ¢ © 0@ -0 B @@ -6 O] 0
2)

and

b
(st ) @ = [ & OGO -6 @F Bl 6 (0)~ 0 @) £ (0) dt,
(3)

where p, u > 0; v,w € R, which are continuous functions [3].
In this work we define and study the multivariate analogs of and .
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N N
Let H [aivbi] - RN7 N > 17 a; < bi7 ai7bi € R? f € C<H [aiabi] . Let
i=1 =1

also i, t; € [ai, bi]; piyps > 05 vi,w; € Ry i = 1,...,N. Here ¢; € C*([a;,b:])
which is increasing, ¢ = 1,...,N. We set a = (a1,...,an), b = (b1,...,bn), z =
(‘T"17"'7$N)7 t = (tlaatN)7 p = (pla"'7pN)’ /’(‘ = (:ula"'vlf['N)v ’Y = (717" 7’YN)
W= (w17"'7wN)7 11[} = (d)lv 71/)N) .

We define the left and right mixed Prabhakar multiple fractional integrals with
respect to v, respectively, as follows:

(ent) @ = [ [T sy @

1
Epulh [wl (% ( i) ’(/Jl (tz))pl]] f (tl, ...,tN) dtl...dtN,
with z; > a;,1=1,..., N;

by
(Mehus 1) =/ / D () — i @) (5)

Nzl

EZ:JM [wi (’L/)z (tz) — 1/11 (CCZ))m]] f (tl, ceey tN) dtl...dtN,
We give

Theorem 1.1. Let p;,v; > 0, u; > 1, w; € R; ¢ = 1,..., N. Then <M633$7w7a+f> ,

(M T b f) (lj_v[ [ai’bz‘})

=1

N

Proof. Tt is enough to prove that <M€33#7w7a+f> eC (Hl (@i, Z]) The proof for
1=

the second is similar and omitted.

One can write

(Meptard) @ = [y x ﬁ[ ) (W (ws) =i (#))"
PuwaJr ﬁl[ai,bi] il;ll[aiﬂfm] 1l 7 7 1 \lz
(6)

i=

B . lwi (Wi (wor) — i (8))™]] f (¢) dt,

N
where x is the characteristic function and zg = (zo1, ..., zon) € [] [as, bi] -
i=1
N
Let x,, — x¢ as m — +o0o, where x,,, € [] [as, b;]; with @y, = (Tm1y ooy TN ) -
i=1

We will prove that (M Ziw a+f> (Tr) — (Me'pyfvw,wrf) (w0), as m — +o0.
We have that

(eBet) )= fy Xty OO0
(7)

i=1

EYe L [wi (i (i) — ¢ (8))™]] f (t) dt.
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We notice that x » (t) = x ~ (t), a.e.; also it holds
’L'I;[l[ai’z"“:] 'il;Il[ai’ajOi]

0} (t) (Vi (Tma) — i (E))" B wi (1 (2ma) — s (ti))pi]}

3
0
2

i

—-

%II[ ) (@i (@oi) — 1 (1)) B, [en (9 (i) — i (1))]] = T (w0).

as m — +00.
Furthermore we obtain

g OTED IO 23 OT; )0,
a.e. on H [a;, b;], as m — +o0.
Howe;er we have that
@) |T3 ()| | f ()] < T2 (2m)] 1 f (£)] < (8)

X N
/'1;11 [ai,Zmi]

N
T 1008 gy 0 (Br) = s (@)™ e el (0 () = s (02))™])]

I~ < Fo0.
0, [ai,b;
=1

Thus, by the dominated convergence theorem, we derive

. x (DT, (@) f w%/ (O T, (z0) f () dt,
/H la;,b;] 1ﬁl[ai7xmi] ! T1 [as,b:] ﬁ[ [ai,z0i] !

h (9)

as m — +oo, proving the claim. O

Conjecture 1.2. Functions and (@ must be continuous when p;,pu; > 0;
Yi, Wi € ]R, 1 =1, ,N

We also present the following basic Hardy type inequalities.
Theorem 1.3. Let p;, i, vi,w; > 0,9 =1,...., N. Then

I 2 [

i=

oo, [T [ai,bi]
1=1

M 3 )H
{ (et s oo’

(Mlﬂm\ﬂwmnamﬁ<

N
lH [(i (0) = i (@) B gy i (9 (b)) — 4 (ai))pi]]] [ < 0o,
i=1 Oovil;ll[aiybi]
(10)

respectively.
Here and (@ are bounded and positive linear operators.
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Proof. 1t is enough to estimate only H (M z:fw a+f) H . The proof of the
0, H [a;,b;]

second as similar is omitted. We have that

((Mertuarf) @ >\ (M waa+|f|)( )=

lNN
/ /Hw ) = i ()

Ey i [wi ("/Jz (mz) wZ( ) ]] |f(t17...,t )|dt1...dtN <

. H(/ (1) (s (i) — s ()"
(

B o (0 () — ()] ) = (1)
(1 o i o 2 — b (1))
1 0, 11 ([ e s —vie)

BT (piks + 12) pzk iy / vi ( — (ti))(pik#“i)ldti] _
- - (’yl)kl wkz pebiin]
1A~ b H Z KT (piki ‘ Wz () — s (a3)) -
=1 @ir2i =1 Lk;=0

I [W" ()~ by (e Y i) Z 0 <ai>>’">ki] -

kT (piki 4+ pi + 1)
N
||f||Oo B o] H (Wi () = i (@) By Twis (i (26) — i (00))7]] <

N
AN i T (@i (0) = i (i)™ B i s (1 (ba) = i (@i))™]]

The claim is proved. ([l
We make

Remark 1.4. Let p;, pi,viswi > 0, i@ = 1,.... N. We define the kernels (y =
N

(yla"'ayN) S 'Hl (azvbz))
1=

kay (z,y) = XII_VI (as.i] (y) H [1/1; (ys) (Wi (z2) — i (yi))#iﬂ
e i=1

EYi L lwi (P () — i (1)) (13)
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and

YVx,ye H(al, b;) .

We compute the integral

K,y (2) ::/N kot (z, y)dy(MeZ}fWHl) (x) =

H (ai,bi)
/ / T (1) — s (t2))"
Eﬁyv ; [wi (’Lﬂz (.231) — ’I,ﬁl( ,)) H dtl...dtN = (15)
N
Il < / ¥ ) = (8B s (i () — s (8)”] dti) _

(by D7 @)
H (Wi (x3) = i (@)™ B gy [wi (i () — i (@) ™']] -

That is
N

= [T [ @) = i (@)™ B gy s (05 () = 4hi (a0))™]] . (16)

i=1

Vae H (ai,bi).
i=1
Similarly, we compute the integral

Ky (z) = /N ko (z,y) dy @ (Mezy;:f,w,b— 1) (z) =
H (ai,bi)

LT (i (0) = i (@)™ By [wi (s (02) =i (2:2))™]] (17)

i=1

Ve H(al, b;) .

i=
Next, we form the ratios

kaJr (.’E, y) _
Koy (2)

i e Aol () — aby. (a7.))Pi
X ) T 0 ) = )" B e (0 () — ()"

i=1

=

(i () = i (@) B g1 [wi (Wi (22) — 1 (00))]]

Il
_

[
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B Ul (ys) (s () — s ()"
- ﬁ(aum ) H ( (Vi (i) — i (a3)™ >

Al EZJ e (Wi (Wi (1) — i ()]
pl,p‘rkl [wi (Wi (24) — i ()] )

o

and

ko (x,y) N (0 () (s (i) — s ()"
Ky (Z‘) Xﬁ [zi,b;) ( )H ( )

N (Wi (bs) — i (23))!"

- pz i w? (wz (yz) 1/)1 (le))pt]
zl;[l ( pz pit1 [wi (Y5 (b;) — s (a:z))p’]> ’ (19)

N
YVx,y € H(az, b;).

In this work we prove a variety of interesting generalized multivariate Hardy type
fractional inequalities under convexity, related to and , mixed generalized
multivariate left and right Prabhakar type fractional integrals.

2. PREREQUISITES

I) Let (21,31, 1) and (Q9, X9, ua) be measure spaces with positive o-finite mea-
sures, and let k; : 1 x Q2 — R be nonnegative measurable functions, k; (z,-)
measurable on 9, and

K, (z) = /Q by (22y) dpis (), for amy @ € Q. (20)
2

j=1,..,r € N. We assume that K; () > 0 a.e. on {; and the weight function
are nonnegative measurable functions on the related set.
We consider measurable functions g; : £ — R with the representation

95 (z) = ; ki (z,9) 15 () dpz (y) (21)

where f; : {22 — R are measurable functions, j = 1, ...,7. Here u stands for a weight
function on Q7 (nonnegative measurable function).
We mention

Theorem 2.1. ([1], p. 29) Let j € {1,....,r} be fived. Assume that the function

w(@) T1 ks(e.0)
r— | —F— | is integrable on 4, for each y € Q5. Define X\, on Qs by

j=1
11 K;(2)
j=1

r )= | = dyn () < o (22)
= _1;11 K; (2)

Here @; : Ry — Ry, j=1,...,7, are convex and increasing functions.

Then .
/Qlu(x)jl:[lfﬁj < ;;,j (z)

SIZCE




GENERALIZED MULTIVARIATE PRABHAKAR TYPE FRACTIONAL INTEGRALS AND INEQUALITIES

H/ 1t ) | ([ o5

J#J
true for all measurable functions, j =1,...,r, f; : Q2 — R such that:
(1) fi, Q5 (|f;1), are both k; (x,y) dus (y) - integrable, pi-a.e. in x € Qq,
(ii) @5 (|£5]) 5 @1 (D)5 @2 (1), @5 (1fal) s @5 ((55]) s @0 (12D, are att
La-integrable,

FO) G w). @

and for all corresponding functions g; given by . Above (I>]f( 7) means
missing item.
IT) We need

Remark 2.2. In the next we consider for j = 1,...,r, the measurable functions
fijs f25: Q2 = R, and

0 () = / Ky () fiy (u) disz () (24)

2

and

e /k (2,) fos (4) iz (1) (25)

these are now instead of (21] (.)
Again here uw > 0 is a weight measurable function on ;.

We will use the following rational result:

Theorem 2.3. (2], p. 405) Here 0 < fo; (y) < 00, a.e., j = 1,....r. Let j €

u(z) 11 kj(@,y) f25(y)
{1,...,r} be fizred. Assume that the function x — =

is integrable

on Qy, for each y € Qy. Define X\* on Qs by

h J ’
Ny H ) [ |— dun (2) <0, (26)
Q jl;[l g2j (x)

Here ®; : Ry — Ry, j=1,...,7, are conver and increasing functions.
915 \*

Then

/u H(I) (gQJx
1], o ([ aew | (] (
J#J

true for all measurable functions, j = 1,...,7, fi;, f2j : Q2 = R such that:

f1 (y) J1;(y)
() fzj (f2;(y)
x € Qy,

) dpa () <

f1j (y)
f2§ (y)

> A () dpg (y)> , (1)

), are both kj (x,y) fa; (y) dua (y) - integrable, pq-a.e. in



f1j(y)
fzj(y)

f1i(y)
f25(y)
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(ii) /\j*@;(

), and P; (
integrable;

and for all corresponding g1; given by , and go; given by .

IIT) Here we follow [2], p. 441, see Chapter 22.

Let (91,31, 11) and (Qg, X3, u2) be measure spaces with positive o-finite mea-
sures, and let k; : @ x Q3 — R be nonnegative measurable functions, k; (z,-)
measurable on 29, and

K (@)= [y (@g)dia (), for any o € 9, (28)

), for j = {1,...r} = {7}, are all po-

j=1,..,r € N. We assume that K; () > 0 a.e. on €; and the weight functions
are nonnegative measurable functions on the related set.
We consider measurable functions g; : {2y — R with the representation

g; () = /Q Ky (29) f; () dps () (20)

where f; : 02 — R are measurable functions, j = 1,...,r.
Here u stands for a weight function on €; (u > 0, which is measurable).
We will use the following general result:

Theorem 2.4. ([2], p. 442) Assume that the functions (j = 1,2,....1 € N) z —

(u (x) %) are integrable on Q, for each fized y € Qa. Define u; on Qa by
u; (y) ::/ u(x) dp (x) < oo. (30)
! (921 K; (z)
Letp; >1: 3 ]% = 1. Let the functions ®; : Ry — R, j =1,...,7, be convex
J=1 J
and increasing.

Then

> dpy (z) <

wy ()@ (1f; ())" dyss <y>) " (31)

Ta: (]9
u(z) || ®j <‘

/91 J[[l K (z)
1/,
for all measurable functions f; : Qo =R (j =1,...,7) such that

(i) fi, ®; (If;D)77, are both kj (z,y)dus (y) - integrable, pi-a.e. in x € O,
7=1..r

(ii) u;j®; (|f;])" is po-integrable, j =1,....r,

and for all corresponding functions g; (j =1,...,r) given by (@

IV) Let (£21,%1,p1) and (Q2, X2, o) be measure spaces with positive o-finite
measures, and let k& : Q; x Q2 — R be nonnegative measurable functions, k (x,-)
measurable on 9, and

K@) = [ k) dua (o), forany o € 0. (32)

We suppose that K (z) > 0 a.e. on ; and by a weight function u (shortly: a
weight), we mean a nonnegative measurable function on the actual set. Let the
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measurable functions g; : 1 = R, j =1,...,7, with the representation

05 () = /Q k() 5 (v) dpa (). (33)

where f; : Q2 — R are measurable functions, j = 1,...,r
Denote by & = z := (21, ...,2.) € R", §:= (91, ., 9-) and [ := (f1,..., ).
We consider here ® : R, — R a convex function, which is increasing per coordi-
nate, i.e. if x; <y;, j=1,...,7, then
D (z1, .0, 2r) <P (Y1, e, Yr) -
In [2], p. 588, we proved that

Theorem 2.5. Let u be a weight function on 4, and k, K, g;, f;, j=1,...,7 €N,
and ® defined as above. Assume that the function x — u (x) kay) 4o integrable on

Q4 for each fized y € Q. Define v on Qy by e
o= [ ) Y s (2) < . (34)
Then
/Qlu(x)fb (%Eg 'ig;') dpn () <
/ 0P 0y ) iz (), (35)

under the assumptions:

(1) fi, © (I f1], - |fr]), are k (z,y) dus (y) -integrable, py -a.e. in x € Qq, for all
7=1..7

(ii) 0 (1) ® (fs )]s os fy (W)]) i s -imtegrable.
3. MAIN RESULTS
From now on in this work we assume p;, p;,vi,w; > 0, for ¢ = 1,..., N. Clearly

N
here (M Zﬁ)w a+f> (M Z;fw b f) are measurable functions over [] [a;, b;], where
i=1

(H [a;, Z]) Infact by Theorem E|7 these are integrable functions on

s:12

[au 1]-

I’) Here we apply Theoremlto 7 (i: for f e C (H [a;, Z]), ji=1,..,r

Theorem 3.1. Let j € {1,...,r} be fized. Assume that the function T —
N N

( ( z‘éﬁfﬁf) ) ) is integrable on [] (a;,b;), for each y € [ (as,bi), see ,
i=1 i=1

N
§). Here u > 0 stands for a weight function on [] (a;,b;). Define A} on

i=1

ﬂ

[1 (ai,b;) b

=1

~.

N ) = /ﬁl(ai,m (v (B=22) Y o < o, (30
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N
which is assumed to be integrable on [] (a;,b;) .
i=1
Here ®; : Ry — Ry, j=1,...,r, are conver and increasing functions.
Then

M v
r ‘ Pyl,w, a-',—f] ( )‘
/N . u () H ®; [ = ( ) dx
et o= T () = (@) B s (01 () = 1 (@)]
(37)
< / ©; (If; (w))) dy / @5 ff(y)‘ X (y) dy
]1;[1 ‘ﬁl(ai»bi) ‘ﬁl(ahbi) ! ( ! )
i#7 "
We continue with
Theorem 3.2. Let j € {1,...,r} be ﬁmed Assume that the functz'on T —
( ( ’y)> ) is integrable on H (ai,b;), for each y € H (ai,b;), see ,
i=1 i=1
Here w > 0 stands for a weight function on H (a;, b;). Define N\ on
=1
[T (as, ;) by
i=1
_ kb* ($7y) "
AL (y) == / (u (x) ( dx < o0, (38)
1 (as.b0) Ky ()
N
which is assumed to be integrable on ] (ai,b;).
i=1
Here ®; : Ry — Ry, j=1,...,7, are convex and increasing functions.
Then
M v5¥
: |(Mepita ti) @)
/N u(z) || @, ( “p. ]> dx
1_[ (ai;b;)

=\ T L0800 = @) B3 o 0 00) = )
) (39)

H / S| { o es(5w[)A7 @

N
IT’) Here we apply Theorem to , for fij,fo; € C <H [a;, Z]), j =
1=1
1 .

PREEY)

Theorem 3.3. Consider fo; >0, j =1,..,r. Let j € {1,...,r} be fized. Assume

that the function x — | u(z) (kay (z,y))" [ (Mwwfzj(y)) (see (16])) is
j=1 ( €om,w a+f21)(m)
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N N N
integrable on [] (a4, b;), for each y € H (a;,b;). Define X5t on H (ai,b;) by
i=1 i=1 i=1

>\*+ H fQj /N U (CL’) (kaJr (.’E, y))T dr < 0, (40)
il;ll(ai,bi) ﬁ (Mez’;:f’w’aJrfgj (.’IJ))

for appropiate weight u > 0, so that \:T is integrable on H (ai, b;) .

Here ®; : Ry — Ry, j=1,...,7, are convex and mcreasmg functions. Then
r Mez;:fw ot 1) (m)’
~ u(x) H D, YT dx <
[T (ai,b:) j=1 p’p, w, a+f2j (.’L‘)

i=1

11 (w)] W]\

We continue with

Theorem 3.4. Consider fo; >0, j =1,..,r. Let j € {1,...,r} be fized. Assume
that the function x — <u (@) (kp— (z,9))" T1 (W%)) (see (I)) is
: ep,u,u,b— 235 x

7=1

N N
integrable on [] (a;,b;), for each y € H (@i, bi). Define Xi~ on [] (as,b;) by
i=1 i=1

=1

k _ T
N (y Hfzj /N ; u(z) (k- (z,9)) dr < oo, (42)
1 (a::b0) I1 (M Z,lfwb f2j (33))
j=1
for appropiate weight u > 0, so that \:~ is integrable on H (ai, b;) .

Here ®; : Ry — Ry, j=1,...,7, are convex and mcreasmg functions. Then

r M ;¥ f
p py,w,b—J 17 (l‘)‘
/N u(x)Héj YIRE: dx <
il;ll(a’i’bi) j=1 p pow,b— f2j (Z‘)

11y )] A
H/maw (fm(i))dy /ﬁ(%bl)‘l’j = | (y)dy | . (43)

— i=1 i=1

J#3

N
IIT’) Here we apply Theorem|§ to , for f; € C H [a;, z]), =1,..r.
i=1
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Theorem 3.5. Assume that the function x — (u (x) k[‘?ﬁw?’;)) is integrable on

N N
IT (asb )ﬁrwduhwyellw“) Define p* on T[ (as,b:) by
i=1 i=1
kay (2,y)
+ — at \%
o= [y ) e <o, (44)
1 (asb) Kay (2)
i=1
(see , (@, (@) for appropiate weight u > 0, so that p* is integrable on
N
[T (ai, bi) -
i=1

T
Letp; >1: %" p%- = 1. Let the functions ®; : R - Ry, j=1 r, be convex
j=1
and increasing.
Then

" Me’Y?/fw a+f] ( )
u(z) I | D; dr <
/ﬁ (ai,bi) ( j=1 ! Ka+( )
i=1

([, rreenwa) (45)
J=1 i=1 e

We continue with

Theorem 3.6. Assume that the function x — (u (z) %) is integrable on

I (a0, for cach fised y € 1 (asb). Define = on T (a0 by

=1
— kb* (‘T7 y)
p” (y): / u(r) ———=dz < 00, (46)
(see , , (@) for appropiate weight uw > 0, so that p~ is integrable on
N
1:11 (ah bz) .

T
Letp; >1: %" p%- = 1. Let the functions ®; : R - Ry, j=1 r, be convex
j=1
and increasing.
Then

r Me’y;wwb_f, (z)
/11_\,[ u () H o Pt b= dr <

1 (as.bs) i Ky ()
. )& (If; W) dy | A7
H(A@Hp@)GNM)y (47)

N
IV’) Here we apply TheoremHto , for f; € C H [a;, 1]) =1,..,r
(3

=1
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Theorem 3.7. Consider here ® : R, — R a convex function, which is increasing

per coordinate, and u > 0 the weight. Assume that the function x — u (x) %

N N
is integrable on[] (ai,b;) for each y € H (a;,b;). Define vt on [] (ai,b;) (see
i=1

=1 =1

(74). (18) by

vt (y) = /N u(x) de < 00, (48)

for appropiate u, so that v™ is integrable on [] (ai,b;). Then

=1

o MefywwaJrfl( )‘ Me’ywwa+fr( ) dp <
/ﬁgw“(” K@ 7 Kam)UF
[ @R Wl @ (19)
I1 (a:,bi)

i=1
We also give

Theorem 3.8. Consider here ® : R, — R a convex function, which is increasing

per coordinate, and u > 0 the weight. Assume that the function x — u(x) k;’(;fagzy))

N
is integrable onH (@i, b;) for each y € H (ai,b;). Define v~ on [ (a;,b;) (see
i=1

1=1 =1

@@, ([@9) by

_ kb— (J),y)
v y::/ u(z) ———=dz < 00, 50)
= Ji " T (
N
for appropiate u, so that v~ is integrable on [] (a;,b;). Then
i=1
[ o M @] MG b @]
u(x yeeny T S
ﬁ(a“b ) Ky () Ky ()
[e v @G el ) d (51)
PG

One can produce a vast wealth of similar results, related to (4f) and ( . by
applying the general results of [2], Chapters 21-27, but we choose here to skip this
task.

We mention

Definition 3.9. All as in (4|) and (9)), = € H [a;,b;]. We define the left and

mght partial Prabhakar fractional integrals wzth respect to Yy, respectively, for k =
1,...,N, as follows:

(et ) @ = [0 w0 - @ @

EYs o lwr (ke (z) — Uk (6))70]] f (21, ooy @1t Tt ooy ) b,
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with ap, < xp < by;
and

bk
(Pt 1) (@)= [ () (W (1) = )™ (53)

Tk

EZ: Ik [wk (T/Jk (tk) - ﬁ}k (xk))PkH f (xla oy Th—1, bl Thot 1, 7$N) dtk?
with ap, < xp, < by.
3], @, are continuous functions in xy, k=1,..., N.

We need
Definition 3.10. ([I6], p. 35) Here we consider the Prabhakar function with re-
spect to another function o (x) >0, z € [a,b], a € C ([a,b]), as follows:

E’Y
(a6 { Z EIT ( ka +B)

2*, (54)
where § >0, v € R, z € R.
We mention

Definition 3.11. All as in and (3]), however now instead of p we have p (x) =
(p1 (1) ..., pn (xN)), where 0 < p; € C([a;,b;]), for i = 1,...,N. We define the
left and right mized Prabhakar multiple fractional integrals of variable degree with
respect to 1, respectively, as follows:

(Vebtuast) / / I [ ) @ ) — e

B [wi (; (1) — i (ti))p”(t"')H F(tr, o ty) dty.dty, (55)
with x; > a;, 1 =1,...,N;

(et sy = [ [

Z1 IN 4

=

[% (t:) (i (ts) — s (q))" "

Il
_

B [wi (5 (t3) — 5 (xz))f’*“)H F(te, o tn) dty...dty, (56)
with T; < bi, i = 1, ...,N.
One can prove similar results as above and in [2], Chapters 21-27, for the oper-
ators . . . but we omit here this task.
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