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LYAPUNOV INEQUALITIES FOR A CLASS OF ψ-LAPLACE

EQUATIONS

XU GUO, HAOFAN WANG, JUN ZHENG*

Abstract. In this work, we establish several Lyapunov inequalities for a class

of nonlinear higher-order ψ-Laplace equations, where ψ satisfies the Tolksdorf-
type structural conditions without any restriction on the convexity of tψ(t) or

1
ψ(t)

.

1. Introduction

In 1907, Lyapunov considered the Hill’s equation

u′′(x) + r(x)u(x) =0, x ∈ (a, b),

u(a) = u(b) =0,

and proved that if there exists a nontrivial solution u, then the inequality∫ b

a

r(x)dx ≥ 4

b− a
(1.1)

holds true, where r is a non-negative continuous function on [a, b]; see [1]. The
Lyapunov inequality (1.1) and many of its generalizations have proved to be useful
tools in oscillation theory, disconjugacy, eigenvalue problems, and numerous other
applications in the theories of differential and difference equations, and also in time
scales; see, e.g., [2]-[8] for comprehensive surveys. The Lyapunov-type inequalities
for second order differential equations, and higher-order differential equations, have
been well addressed in e.g., [9]-[17], and [18]-[29], respectively.

It is worth noting that most of the existing literature focused on establishing
the Lyapunov inequalities for the p-Laplace equations, while few considered equa-
tions having a general form, except, e.g., [30]-[32], where the Lyapunov inequalities
were established for ψ-Laplace equations. More precisely, in [30], the Lyapunov
inequality

2

(
k1
2

)[1−log2(b−a)]

≤
∫ b

a

r(x)dx (1.2)
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was obtained for the following ψ-Laplace equation

(ψ(u′(x)))′ + r(x)ψ(u(x)) =0, x ∈ (a, b),

u(a) = u(b) =0,

where ψ : R → R is an odd nondecreasing function satisfying 2ψ(2t) ≤ k1ψ(t) for
t ≥ 0 with a certain constant k1 > 0, and such that tψ(t) is convex in t, r is a
positive integrable function, and [v] denotes the largest integer less than or equal
to v.

In [31], the Lyapunov-type inequality

2

ψ
(
b−a
2

) ≤ λ ∫ b

a

r(x)
f(u(x))

ψ(u(x))
dx (1.3)

was established for the ψ-Laplace equation with a nonlinear term having a general
form

(ψ(u′(x)))′ + λr(x)f(u(x)) =0, x ∈ (a, b), (1.4a)

u(a) = u(b) =0, (1.4b)

under the assumptions that ψ is odd, increasing, and sub-multiplicative on [0,+∞),
and 1

ψ(t) is convex on (0,+∞), f ∈ C(R;R) is odd and satisfies tf(t) > 0 for t 6= 0,

and r ∈ C([a, b]; (0,+∞)), where λ > 0 is a constant.
It is worth mentioning that the convexity condition of tψ(t) (and 1

ψ(t) ) proposed

in [30] (and [31]) plays an essential role in establishing the Lyapunov-type inequal-
ities for ψ-Laplace equations. In order to avoid employing the convexity conditions
(and the sub-multiplicative condition of ψ in [31]), the authors of [32] proposed the
Tolksdorf-type structural conditions to obtain the Lyapunov inequalities for a class
of ψ-Laplace equations. Specifically, under the assumptions that

(A.1) ψ, f ∈ C(−∞,+∞)∩C1(0,+∞) with f 6≡ 0 on (−∞,∞), r ∈ L1(a, b) with
r 6≡ 0 on (a, b),

(A.2) ψ is odd on (−∞,+∞),
(A.3) f ≥ 0 on [0,+∞),
(A.4) there exists k0 > 0 such that |f(t)| ≤ k0ψ(|t|), ∀t ∈ (−∞,+∞),
(A.5) there exist constants δ0, δ1 ≥ 0 such that δ0ψ(t) ≤ tψ′(t) ≤ δ1ψ(t),∀t > 0,

or
(A.5’) there exist constants θ0, θ1 ≥ 0 such that θ0f(t) ≤ tf ′(t) ≤ θ1f(t),∀t > 0,

several Lyapunov inequalities were established for the ψ-Laplace equation (1.4a)
under the boundary condition (1.4b) with λ = 1 in [32]. In particular, for ψ, f, r
satisfying (A.1)-(A.5), if u is a nontrivial solution of (1.4a), (1.4b) , then it holds
that ∫ b

a

|r(x)|dx ≥ 2

k0
· 1 + δ0

1 + δ1
·min

{(
2

b− a

)δ0
,

(
2

b− a

)δ1}
,

and for ψ, f, r satisfying (A.1)-(A.4) and (A.5’), if u is a nontrivial solution of
(1.4a), (1.4b) , then it holds that∫ b

a

|r(x)|dx ≥ 2

k0
· 1 + θ0

1 + θ1
·min

{(
2

b− a

)θ0
,

(
2

b− a

)θ1}
.
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It should be noticed that the structural condition (A.5) (or (A.5’)), whose slight
version originally introduced by Tolksdorf in [33] has important applications in the
regularity theory of partial differential equations (see, e.g., [34, 35]), allows for not
only the p-Laplacian case by setting ψ(t) = |t|p−2t with δ0 = δ1 = p− 1 for p > 1,
but also more nonlinear cases, e.g., ψ(t) = f(t) = |t|a−1t logc (b|t|+ d) with δ0 = a,

δ1 = a+ 1
ln d for a, b > 0, c, d > 1, and ψ(t) = f(t) = |t|a−1t

logc (b|t|+d) with δ0 = a− 1
ln d ,

δ1 = a for b > 0, c, d > 1, a > 1
ln d . More examples can be found in [32].

The purpose of this paper is to continue the work presented in [32] by establishing
Lyapunov-type inequalities for a class of nonlinear ψ-Laplace equations of higher-
order. The main tool used in this paper is the Taylor’s formula guaranteeing that
the proofs are easy-to-follow. The results obtained in this paper can be seen as
generalizations and complements of the ones presented in [30]-[32].

2. Problem setting and main results

In this paper, we consider the following higher-order ψ-Laplace equation having
a nonlinear term

(ψ(u(m)(x)))(n) + r(x)f(u(q)(x)) =0, x ∈ (a, b), (2.1a)

u(m−i)(a) = u(j)(b) =0, i = 1, 2, ..., n, j = 0, 1, ...,m− 1, (2.1b)

where a, b ∈ R with a < b, m ∈ Z+, n ∈ Z+, q ∈ N with 0 ≤ m − n ≤ q ≤ m − 1,
and ψ, f, r satisfy

(A.1’) ψ ∈ Cn−1(−∞,+∞) ∩ Cn(0,+∞), f ∈ C(−∞,+∞) ∩ C1(0,+∞), f 6≡ 0
on (0,+∞), and r ∈ L1(a, b) with r 6≡ 0 on (a, b),

and (A.2) - (A.5) (or (A.2) - (A.4), (A.5’)).
We say that u is a nontrivial solution of the ψ-Laplace equation (2.1a) under

the boundary condition (2.1b) if u 6≡ 0 on (a, b), u ∈ Cm(a, b) ∩ Cm−1([a, b]),(
ψ
(
u(m)(x)

))(n−1)
is absolutely continuous in x, u satisfies (2.1a) almost every-

where in (a, b), and u satisfies (2.1b). The main results are as follows.

Theorem 2.1. Assume that ψ, f, r satisfy (A.1’), (A.2) - (A.5), and u is a
nontrivial solution of the ψ-Laplace equation (2.1a) under the boundary condition
(2.1b). Then the following inequality holds:∫ b

a

|r(x)|dx ≥ 2

k0
· (n− 1)!

(b− a)n−1
· 1 + δ0

1 + δ1

·min

{(
2 · (m− q − 1)!

(b− a)m−q

)δ0
,

(
2 · (m− q − 1)!

(b− a)m−q

)δ1}
. (2.2)

Furthermore, if ψ(t)t is a convex function on [0,+∞), then it holds that∫ b

a

|r(x)| dx ≥ 2

k0
· (n− 1)!

(b− a)n−1
·min

{(
2 · (m− q − 1)!

(b− a)m−q

)δ0
,

(
2 · (m− q − 1)!

(b− a)m−q

)δ1}
.

(2.3)
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Theorem 2.2. Assume that ψ, f, r satisfy (A.1’), (A.2) - (A.4), (A.5’), and u
is a nontrivial solution of the ψ-Laplace equation (2.1a) under the boundary condi-
tion (2.1b), then the following inequality holds:∫ b

a

|r(x)| dx ≥ 2

k0
· (n− 1)!

(b− a)n−1
· 1 + θ0

1 + θ1

·min

{(
2 · (m− q − 1)!

(b− a)m−q

)θ0
,

(
2 · (m− q − 1)!

(b− a)m−q

)θ1}
. (2.4)

Furthermore, if ψ(t)t is a convex function on [0,+∞), then it holds that∫ b

a

|r(x)| dx ≥ 2

k0
· (n− 1)!

(b− a)n−1
·min

{(
2 · (m− q − 1)!

(b− a)m−q

)θ0
,

(
2 · (m− q − 1)!

(b− a)m−q

)θ1}
.

(2.5)

Corollary 2.3. Let r ∈ L1(a, b) with r 6≡ 0 on (a, b).

(i) If ψ(t) = f(t) = |t|p−2t in (2.1a) with p > 1, and u is a nontrivial solution of
the ψ-Laplace equation (2.1a) under the boundary condition (2.1b), then the
following inequality holds:∫ b

a

|r(x)| dx ≥ 2 · (n− 1)!

(b− a)n−1
·
(

2 · (m− q − 1)!

(b− a)m−q

)p−1
.

In particular, for m = n = 1, q = 0, it holds that
∫ b
a
|r(x)|dx ≥ 2p

(b−a)p−1 ,

which is the same as one of the results obtained in [15, 16, 30].
(ii) If ψ(t) = f(t) = |t|a−1t logc(b|t|+ d) in (2.1a) with a, b > 0 and c, d > 1, and

u is a nontrivial solution of the ψ-Laplace equation (2.1a) under the boundary
condition (2.1b), then the following inequality holds:∫ b

a

|r(x)|dx ≥2 · (n− 1)!

(b− a)n−1
· (1 + a) ln d

(1 + a) ln d+ 1

·min

{(
2 · (m− q − 1)!

(b− a)m−q

)a
,

(
2 · (m− q − 1)!

(b− a)m−q

)a+ 1
ln d

}
.

(iii) If ψ(t) = f(t) = |t|a−1t
logc(b|t|+d)

in (2.1a) with b > 0, c, d > 1, and a > 1
lnd , and u

is a nontrivial solution of the ψ-Laplace equation (2.1a) under the boundary
condition (2.1b), then the following inequality holds:∫ b

a

|r(x)|dx ≥2 · (n− 1)!

(b− a)n−1
· (1 + a) ln d− 1

(1 + a) ln d

·min

{(
2 · (m− q − 1)!

(b− a)m−q

)a− 1
ln d

,

(
2 · (m− q − 1)!

(b− a)m−q

)a}
.

Remark 2.1. Compared with the results obtained in [31] (see (1.3)), the estimates
presented in Theorem 2.1 and Theorem 2.2 provide explicit forms of the Lyapunov
inequalities.
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3. Proof of main results

Lemma 3.1 ([32]). Let ψ(t) satisfy (A.1’), (A.2), (A.5), and Ψ(t) :=
∫ t
0
ψ(s)ds

for t ≥ 0. Then the following statements hold true:

(i) ψ(st) ≤ max{sδ0 , sδ1}ψ(t),∀s, t ≥ 0;
(ii) Ψ(t) is Cn+1-continuous on (0,+∞) and convex on [0,+∞);

(iii) tψ(t)
1+δ1

≤ Ψ(t) ≤ tψ(t)
1+δ0

,∀t ≥ 0.

Proof of Theorem 2.1. We prove first (2.2). Note that the Taylor’s Theorem
(see, e.g., [36, pp. 470-471]) gives

v(x) =v(a) + v′(a)(x− a) +
v′′(a)

2!
(x− a)2 + ...+

v(k−1)(a)

(k − 1)!
(x− a)k−1

+
(−1)k−1

(k − 1)!

∫ x

a

(t− x)k−1v(k)(t)dt,∀v ∈ Ck(a, b),∀k ∈ Z+,∀x ∈ (a, b),

v(x) =v(b) + v′(b)(x− b) +
v′′(b)

2!
(x− b)2 + ...+

v(k−1)(b)

(k − 1)!
(x− b)k−1

+
(−1)k−1

(k − 1)!

∫ x

b

(t− x)k−1v(k)(t)dt,∀v ∈ Ck(a, b),∀k ∈ Z+,∀x ∈ (a, b).

Letting v := u(q) and k := m− q, we get

u(q)(x) =u(q)(a) + u(q+1)(a)(x− a) + ...+
u(m−q−1)(a)

(m− q − 1)!
(x− a)m−q−1

+
(−1)m−q−1

(m− q − 1)!

∫ x

a

(t− x)m−q−1u(m)(t)dt,∀x ∈ (a, b),

u(q)(x) =u(q)(b) + u(q+1)(b)(x− b) + ...+
u(m−q−1)(b)

(m− q − 1)!
(x− b)m−1

+
(−1)m−q−1

(m− q − 1)!

∫ x

b

(t− x)m−q−1u(m)(t)dt,∀x ∈ (a, b).

Note that u(m−i)(a) = u(j)(b) = 0, i = 1, 2, ..., n, j = 0, 1, ...,m− 1, where m ∈ Z+,
n ∈ Z+, q ∈ N satisfying 0 ≤ m− n ≤ q ≤ m− 1. It follows that

u(q)(x) =
(−1)m−q−1

(m− q − 1)!

∫ x

a

(t− x)m−q−1u(m)(t)dt,∀x ∈ (a, b), (3.1)

u(q)(x) =
(−1)m−q−1

(m− q − 1)!

∫ x

b

(t− x)m−q−1u(m)(t)dt,∀x ∈ (a, b). (3.2)

Then, by (3.1) and (3.2), we get∣∣∣u(q)(x)
∣∣∣

=

∣∣∣∣12 · (−1)m−q−1

(m− q − 1)!

(∫ x

a

(t− x)m−q−1u(m)(t)dt+

∫ x

b

(t− x)m−q−1u(m)(t)dt

)∣∣∣∣
≤1

2
· (b− a)m−q−1

(m− q − 1)!
·
∫ b

a

∣∣∣u(m)(t)
∣∣∣dt, ∀x ∈ (a, b). (3.3)
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Similarly, we have∣∣∣u(m−n)(x)
∣∣∣ =

∣∣∣∣12 · (−1)n−1

(n− 1)!

(∫ x

a

(t− x)n−1u(m)(t)dt+

∫ x

b

(t− x)n−1u(m)(t)dt

)∣∣∣∣
≤1

2
· (b− a)n−1

(n− 1)!
·
∫ b

a

∣∣∣u(m)(t)
∣∣∣dt, ∀x ∈ (a, b). (3.4)

Then we infer from (3.3), (3.4) and Lemma 3.1 that

ψ
(∣∣∣u(q)(x)

∣∣∣) ∣∣∣u(m−n)(x)
∣∣∣

≤ψ

(
1

2
· (b− a)m−q−1

(m− q − 1)!
·
∫ b

a

∣∣∣u(m)(x)
∣∣∣dx) · 1

2
· (b− a)n−1

(n− 1)!

∫ b

a

∣∣∣u(m)(x)
∣∣∣dx

≤1

2
· (b− a)n

(n− 1)!
·max

{(
1

2
· (b− a)m−q

(m− q − 1)!

)δ0
,

(
1

2
· (b− a)m−q

(m− q − 1)!

)δ1}

· ψ

(
1

b− a

∫ b

a

∣∣∣u(m)(x)
∣∣∣ dx) · 1

b− a
·
∫ b

a

∣∣∣u(m)(x)
∣∣∣dx

≤1

2
· (b− a)n

(n− 1)!
·max

{(
1

2
· (b− a)m−q

(m− q − 1)!

)δ0
,

(
1

2
· (b− a)m−q

(m− q − 1)!

)δ1}

· (1 + δ1) ·Ψ

(
1

b− a

∫ b

a

∣∣∣u(m)(x)
∣∣∣dx)

≤1 + δ1
2
· (b− a)n−1

(n− 1)!
·max

{(
1

2
· (b− a)m−q

(m− q − 1)!

)δ0
,

(
1

2
· (b− a)m−q

(m− q − 1)!

)δ1}

·
∫ b

a

Ψ
(∣∣∣u(m)(x)

∣∣∣)dx, ∀x ∈ (a, b). (3.5)

Using Lemma 3.1 (iii) and (A.2), we get∫ b

a

Ψ
(∣∣∣u(m)(x)

∣∣∣) dx ≤ 1

1 + δ0

∫ b

a

ψ
(∣∣∣u(m)(x)

∣∣∣) ∣∣∣u(m)(x)
∣∣∣ dx

=
1

1 + δ0

∫ b

a

ψ
(
u(m)(x)

)
u(m)(x)dx. (3.6)

By integrating by parts, we have

1

1 + δ0

∫ b

a

ψ
(
u(m)(x)

)
u(m)(x)dx =

(−1)n

1 + δ0

∫ b

a

u(m−n)(x)
(
ψ
(
u(m)(x)

))(n)
dx

=
(−1)n+1

1 + δ0

∫ b

a

r(x)f
(
u(q)(x)

)
u(m−n)(x)dx

≤ 1

1 + δ0

∫ b

a

∣∣∣r(x)f
(
u(q)(x)

)
u(m−n)(x)

∣∣∣dx.
(3.7)
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We deduce from (A.4) and (3.5) that

1

1 + δ0

∫ b

a

∣∣∣r(x)f
(
u(q)(x)

)
u(m−n)(x)

∣∣∣ dx
≤ 1

1 + δ0
max
x∈[a,b]

(∣∣∣f (u(q)(x)
)
u(m−n)(x)

∣∣∣) ∫ b

a

|r(x)|dx

≤ k0
1 + δ0

max
x∈[a,b]

(
ψ
(∣∣∣(u(q)(x)

)∣∣∣) ∣∣∣u(m−n)(x)
∣∣∣) ∫ b

a

|r(x)|dx

≤k0(b− a)n−1(1 + δ1)

2(n− 1)!(1 + δ0)

∫ b

a

Ψ
(∣∣∣u(m)(x)

∣∣∣) dx

∫ b

a

|r(x)|dx

·max

{(
1

2
· (b− a)m−q

(m− q − 1)!

)δ0
,

(
1

2
· (b− a)m−q

(m− q − 1)!

)δ1}
. (3.8)

If
∫ b
a

Ψ(|u(m)(x)|)dx = 0, then Ψ(|u(m)(x)|) ≡ 0, which is guaranteed by Lemma

3.1, (A.2) and (A.5). It follows that u(m)(x) ≡ 0, and hence u(x) ≡ Amx
m−1 +

Am−1x
m−2+...+A2x+A1 with some constants Am, Am−1, ..., A1. By the boundary

conditions u(j)(b) = 0, j = 0, 1, ...,m−1, it follows that Am = Am−1 = ... = A1 = 0,
and hence u(x) ≡ 0, which is a contradiction with the assumption that u is a

nontrivial solution. Therefore,
∫ b
a

Ψ(|u(m)(x)|)dx > 0, which along with (3.6), (3.7)
and (3.8) implies that∫ b

a

|r(x)|dx ≥ 2

k0
· (n− 1)!

(b− a)n−1
· 1 + δ0

1 + δ1

·min

{(
2 · (m− q − 1)!

(b− a)m−q

)δ0
,

(
2 · (m− q − 1)!

(b− a)m−q

)δ1}
.

Thus (2.2) has been proved.
In order to prove (2.3), let Φ(t) := ψ(t)t for t ≥ 0. By (3.5), for all x ∈ (a, b),

we get

ψ
(∣∣∣u(q)(x)

∣∣∣) ∣∣∣u(m−n)(x)
∣∣∣

≤1

2
· (b− a)n

(n− 1)!
· ψ

(
1

b− a

∫ b

a

∣∣∣u(m)(x)
∣∣∣ dx) · 1

b− a
·
∫ b

a

∣∣∣u(m)(x)
∣∣∣ dx

·max

{(
1

2
· (b− a)m−q

(m− q − 1)!

)δ0
,

(
1

2
· (b− a)m−q

(m− q − 1)!

)δ1}

=
1

2
· (b− a)n

(n− 1)!
· Φ

(
1

b− a

∫ b

a

∣∣∣u(m)(x)
∣∣∣ dx)

·max

{(
1

2
· (b− a)m−q

(m− q − 1)!

)δ0
,

(
1

2
· (b− a)m−q

(m− q − 1)!

)δ1}

≤1

2
· (b− a)n

(n− 1)!
· 1

b− a

∫ b

a

Φ
(∣∣∣u(m)(x)

∣∣∣) dx
·max

{(
1

2
· (b− a)m−q

(m− q − 1)!

)δ0
,

(
1

2
· (b− a)m−q

(m− q − 1)!

)δ1}
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=
1

2
· (b− a)n−1

(n− 1)!
·
∫ b

a

Φ
(∣∣∣u(m)(x)

∣∣∣) dx
·max

{(
1

2
· (b− a)m−q

(m− q − 1)!

)δ0
,

(
1

2
· (b− a)m−q

(m− q − 1)!

)δ1}
. (3.9)

We infer from (2.1a), (2.1b), (A.4) and (3.9) that∫ b

a

Φ
(∣∣∣u(m)(x)

∣∣∣) dx =

∫ b

a

ψ
(∣∣∣u(m)(x)

∣∣∣) ∣∣∣u(m)(x)
∣∣∣ dx

=

∫ b

a

ψ
(
u(m)(x)

)
u(m)(x)dx

=(−1)n
∫ b

a

u(m−n)(x)
(
ψ
(
u(m)(x)

))(n)
dx

=(−1)n−1
∫ b

a

r(x)f
(
u(q)(x)

)
u(m−n)(x)dx

≤
∫ b

a

∣∣∣r(x)f
(
u(q)(x)

)
u(m−n)(x)

∣∣∣ dx
≤k0

∫ b

a

∣∣∣r(x)ψ
(
u(q)(x)

)
u(m−n)(x)

∣∣∣ dx
≤k0 max

x∈[a,b]

(
ψ
(
u(q)(x)

)
u(m−n)(x)

)∫ b

a

|r(x)|dx

≤k0
2
· (b− a)n−1

(n− 1)!
·
∫ b

a

Φ
(∣∣∣u(m)(x)

∣∣∣) · ∫ b

a

|r(x)|dx

·max

{(
1

2
· (b− a)m−q

(m− q − 1)!

)δ0
,

(
1

2
· (b− a)m−q

(m− q − 1)!

)δ1}
,

which implies (2.3). �

Proof of Theorem 2.2. We only prove (2.4) due to the fact that (2.5) can be

proved in a similar way. Let F (t) :=
∫ t
0
f(s)ds for t ≥ 0. Note that f(t) satisfies

(A.1’), (A.2) - (A.4) and (A.5’). Applying Lemma 3.1 to F (t), for all x ∈ (a, b),
we have

f
(∣∣∣u(q)(x)

∣∣∣) ∣∣∣u(m−n)(x)
∣∣∣ ≤1 + θ1

2
· (b− a)n−1

(n− 1)!
·
∫ b

a

F
(∣∣∣u(m)(x)

∣∣∣) dx

·max

{(
1

2
· (b− a)m−q

(m− q − 1)!

)θ0
,

(
1

2
· (b− a)m−q

(m− q − 1)!

)θ1}
.

(3.10)

Then using integration by parts, Lemma 3.1, (A.2), (A.4), (2.1a), (2.1b) and
(3.10), we obtain∫ b

a

F
(∣∣∣u(m)(x)

∣∣∣)dx ≤ 1

1 + θ0

∫ b

a

f
(∣∣∣u(m)(x)

∣∣∣) ∣∣∣u(m)(x)
∣∣∣dx

≤ k0
1 + θ0

∫ b

a

ψ
(∣∣∣u(m)(x)

∣∣∣) ∣∣∣u(m)(x)
∣∣∣dx
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=
k0

1 + θ0

∫ b

a

ψ
(
u(m)(x)

)
u(m)(x)dx

=
(−1)nk0
1 + θ0

∫ b

a

u(m−n)(x)
(
ψ(u(m)(x))

)(n)
dx

=
(−1)n+1k0

1 + θ0

∫ b

a

r(x)f
(
u(q)(x)

)
u(m−n)(x)dx

≤ k0
1 + θ0

∫ b

a

∣∣∣r(x)f
(
u(q)(x)

)
u(m−n)(x)

∣∣∣dx
≤ k0

1 + θ0
max
x∈[a,b]

(∣∣∣f (u(q)(x)
)
u(m−n)(x)

∣∣∣) ∫ b

a

|r(x)|dx

≤ k0
1 + θ0

· 1 + θ1
2
· (b− a)n−1

(n− 1)!

∫ b

a

F
(∣∣∣u(m)(x)

∣∣∣)dx

∫ b

a

|r(x)|dx

·max

{(
1

2
· (b− a)m−q

(m− q − 1)!

)θ0
,

(
1

2
· (b− a)m−q

(m− q − 1)!

)θ1}
.

Note that
∫ b
a
F
(∣∣u(m)(x)

∣∣) dx > 0, which can be proceeded in the same way as in
the proof of Theorem 2.1. Then we conclude that∫ b

a

|r(x)|dx ≥ 2

k0
· (n− 1)!

(b− a)n−1
· 1 + θ0

1 + θ1

·min

{(
2 · (m− q − 1)!

(b− a)m−q

)θ0
,

(
2 · (m− q − 1)!

(b− a)m−q

)θ1}
.

Finally, (2.4) has been proved. �

Proof of Corollary 2.3. For (i), it should be noticed that δ0 = θ0 = δ1 = θ1 =
p− 1 in (A.5) (or (A.5’)).

For (ii) and (iii), it should be noticed that δ0 = θ0 = a > 0, δ1 = θ1 = a+ 1
ln d > 0

in(A.5) (or (A.5’)), and δ0 = θ0 = a − 1
ln d > 0, δ1 = θ1 = a > 0 in (A.5) (or

(A.5’)), respectively, which have been verified in [32]. �
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