ON SOME HERMITE-HADAMARD INTEGRAL INEQUALITIES
IN MULTIPLICATIVE CALCULUS

MUHAMMAD AAMIR ALI, MUJAHID ABBAS AND AZHAR ALI ZAFAR

Abstract. In this paper, we establish some new Hermite-Hadamard integral inequalities for log-φ-convex and φ-convex functions in the framework of multiplicative calculus. Furthermore, some results related to differentiable log-φ-invex functions are also obtained.

1. Introduction

Grossman and Katz [14] initiated the study of Non-Newtonian calculus and modified the classical calculus introduced by Newton and Leibnitz in the 17th century. On the other hands, Bashirov et al. [3] studied the concept of multiplicative calculus and presented a fundamental theorem of multiplicative calculus. Since then a number of interesting results has been obtained in this direction. For more discussion and applications of this discipline, we refer to [28, 2, 3, 4] and [26]. Some elements of stochastic multiplicative calculus have been investigated in [17] and [13]. Bashirov and Riza [5] also studied complex multiplicative calculus.

Another popular Non-Newtonian calculus, known as bigeometric calculus is studied in [29, 15, 1, 18, 27, 6].

Recall that, multiplicative integral called *integral is denoted by \(\int_{a}^{b} f(x)^{dx} \) whereas the ordinary integral is denoted by \(\int_{a}^{b} f(x)dx \). This is due to the fact that the sum of product terms in the definition of a proper Riemann integral of \(f \) on \([a,b]\) is replaced with the product of terms raised to certain powers. It is also known that [3] if \(f \) is positive and Riemann integrable on \([a,b]\), then it is *integrable on \([a,b]\) and

\[
\int_{a}^{b} (f(x))^{dx} = e^{\int_{a}^{b} \ln(f(x))dx}.
\]

Consistent with [3], the following results and notations will be needed in the sequel.

(i) \(\int_{a}^{b} ((f(x))^{p})^{dx} = \int_{a}^{b} ((f(x))^{dx})^{p} \),

(ii) \(\int_{a}^{b} (f(x)g(x))^{dx} = \int_{a}^{b} (f(x))^{dx} \cdot \int_{a}^{b} (g(x))^{dx} \),

1991 Mathematics Subject Classification. 26D07, 26D15, 35A23.
Key words and phrases. Hermite-Hadamard Inequalities, Convex Set and Multiplicative Integrals.

©2019 Ilirias Research Institute, Prishtinë, Kosovë.
Communicated by Mikail Et.
(iii) \(\int_a^b \frac{f(x)}{g(x)} \, dx = \int_a^b \frac{f(x)^{dx}}{g(x)^{dx}} \),

(iv) \(\int_a^b (f(x))^{dx} = \int_a^b (f(x))^{dx} \cdot \int_c^b (f(x))^{dx}, \quad a \leq c \leq b. \)

(v) \(\int_a^b (f(x))^{dx} = 1 \) and \(\int_a^b (f(x))^{dx} = \left(\int_a^b (f(x))^{dx} \right)^{-1} \).

On the other hand, the notion of convexity plays a significant role in many disciplines such as mathematical finance, economics, engineering, management sciences and optimization theory.

In the recent years, several extensions and generalizations of convexity have been investigated. Noor [22] extended the concept of a convex function to \(\phi\)-convex functions. For more results in this direction, we refer to [19] and [22].

Hermite and Hadamard showed independently that the convex functions are related to an integral inequality. Hadamard’s inequality for convex functions has received much attention in recent years and a remarkable variety of refinements and generalizations have been obtained (see for example, [7, 8, 9, 10, 11, 12]).

The aim of this paper is to establish Hermite Hadamard type integral inequalities for log-\(\phi\)-convex functions, and \(\phi\)-convex functions in the setup of multiplicative calculus.

2. Preliminaries

Let \(K\) be a nonempty closed set in \(\mathbb{R}^n\), and \(K^\circ\) the interior of \(K\). We denote by \(\langle \cdot, \cdot \rangle\) and \(\|\cdot\|\) the inner product and norm on \(\mathbb{R}^n\), respectively. Let \(f, \phi : K \to \mathbb{R}\) be continuous mappings.

We recall the following well known results and concepts.

Definition 2.1 A set \(K\) is said to be convex, if for any \(a, b \in K\),

\[
(1 - t)a + tb = a + t(b - a) \in K, \quad \text{for all } t \in [0, 1]. \tag{2.1}
\]

Definition 2.2 A set \(K\) is said to be \(\phi\)-convex, if for any \(a, b \in K\),

\[
a + te^{i\phi}(b - a) \in K, \quad \text{for all } t \in [0, 1]. \tag{2.2}
\]

If we take \(\phi = 0\), then \(\phi\)-convex set becomes a convex set. The converse does not hold in general.

Definition 2.3 The function \(f\) on the convex set \(K\) is said to be convex, if for any \(a, b \in K\), we have

\[
f(a + t(b - a)) = f((1 - t)a + tb) \leq (1 - t)f(a) + tf(b), \quad \text{for all } t \in [0, 1].
\]

The function \(f\) is said to be concave iff \(-f\) is convex.

Definition 2.4 The function \(f\) on the \(\phi\)-convex set \(K\) is said to be \(\phi\)-convex with respect to \(\phi\), if

\[
f(a + te^{i\phi}(b - a)) \leq (1 - t)f(a) + tf(b), \quad \forall a, b \in K, \quad t \in [0, 1].
\]

The function \(f\) is said to be \(\phi\)-concave iff \(-f\) is \(\phi\)-convex. Note that, every convex function is \(\phi\)-convex but the converse does not hold in general.

Definition 2.5 The function \(f\) on the convex set \(K\) is called quasi convex, if

\[
f(a + t(b - a)) \leq \max \{f(a), f(b)\}, \quad \forall a, b \in K, \quad t \in [0, 1].
\]

Definition 2.6 The function \(f\) on the \(\phi\)-convex set \(K\) is called quasi \(\phi\)-convex, if

\[
f(a + te^{i\phi}(b - a)) \leq \max \{f(a), f(b)\}, \quad \forall a, b \in K, \quad t \in [0, 1].
\]
Definition 2.7 The function \(f \) on the convex set \(K \) is called logarithmic convex, if
\[
f(a + t(b - a)) \leq (f(a))^{1-t}(f(b))^t. \tag{2.3}
\]
Moreover, we have
\[
\log f(a + t(b - a)) \leq (1 - t) \log f(a) + t \log f(b) \quad \forall \ a, b \in K, \quad t \in [0, 1].
\]

Definition 2.8 The function \(f \) on the convex set \(K \) is called logarithmic \(\phi \)-convex, if
\[
f(a + te^{i\phi}(b - a)) \leq (f(a))^{1-t}(f(b))^t. \tag{2.4}
\]

Definition 2.9 The function \(f \) on the \(\phi \)-convex set \(K \) is said to be logarithmic \(\phi \)-convex with respect to \(\phi \), if
\[
f(a + te^{i\phi}(b - a)) \leq (f(a))^{1-t}(f(b))^t. \tag{2.4}
\]
Moreover, we have
\[
\log f(a + te^{i\phi}(b - a)) \leq (1 - t) \log f(a) + t \log f(b) \quad \forall \ a, b \in K, \quad t \in [0, 1].
\]

In view of this fact, we have the following.

Definition 2.10 The differentiable function \(f \) on the \(\phi \)-convex set \(K \) is said to be a log-\(\phi \)-invex function with respect to \(\phi \), if
\[
\log f(b) - \log f(a) \geq \left\langle f'_\phi(a), b - a \right\rangle \quad \forall \ a, b \in K.
\]

It is well known [10, 11, 24, 25] that if \(f \) is a convex function on the interval \(I = [a, b] \), then
\[
f\left(\frac{a + b}{2}\right) \leq \frac{1}{b - a} \int_a^b f(x)dx \leq \frac{f(a) + f(b)}{2}, \quad \forall \ a, b \in I, \tag{2.5}
\]
which is known as the Hermite-Hadamard inequalities for the convex functions. For some results related to this classical result, we refer to [10, 11, 24, 25] and the references therein.

Dragomir and Mond [10] proved the following Hermite-Hadamard type inequalities for the log-convex functions:
\[
f\left(\frac{a + b}{2}\right) \leq \exp\left[\frac{1}{b - a} \int_a^b \ln[f(x)]dx\right]
\leq \frac{1}{b - a} \int_a^b G(f(x), f(a + b - x))dx
\leq \frac{1}{b - a} \int_a^b f(x)dx
\leq L(f(a), f(b)) \leq \frac{f(a) + f(b)}{2}, \tag{2.6}
\]
where \(G(p, q) = \sqrt{pq} \) is the geometric mean and \(L(p, q) = \frac{p - q}{\ln p - \ln q} \) (for \(p \neq q \)) is the logarithmic mean of the positive real numbers \(p, q \). (For \(p = q \), we put \(L(p, q) = p \).)

From now onward, unless otherwise stated, we assume that $K = [a, a + e^{i\phi} (b - a)]$ and $0 \leq \phi \leq \frac{\pi}{2}$.

Note that, if $K = [a, a + e^{i\phi} (b - a)]$ is an interval, then the ϕ-convex functions can be characterized as follows:

$$
| \begin{array}{ccc} 1 & 1 & 1 \\ a & x & a + e^{i\phi} (b - a) \\ f(a) & f(x) & f(a + e^{i\phi} (b - a)) \end{array} | \geq 0,
$$

where $x = a + te^{i\phi}(b - a) \in K$.

Using this definition, it can be easily shown that ϕ-convex functions satisfy the inequalities of the form:

$$
f(x) \leq f(a) + \frac{f(b) - f(a)}{e^{i\phi}(b - a)} (x - a). \quad (2.7)
$$

3. Main Results

Theorem 3.1. If $f : K \to (0, \infty)$ is a ϕ-convex function on the interval of real numbers in K° and $a, b \in K^\circ$ with $a < a + e^{i\phi} (b - a)$ and $0 \leq \phi \leq \frac{\pi}{2}$, then

$$
\left(\int_a^{a + e^{i\phi} (b - a)} (f(x))^\frac{1}{e^{i\phi}(b - a)} \, dx \right) \leq \frac{(f(b))^{f(b)} - f(a)^{f(a)}}{e}. \quad (2.8)
$$

Proof. As f is a ϕ-convex function, we have

$$
\int_a^{a + e^{i\phi} (b - a)} (f(x))^\frac{1}{e^{i\phi}(b - a)} \ln(f(x)) \, dx
$$

$$
= e^{\int_a^{a + e^{i\phi} (b - a)} \ln(f(x)) \, dx} e^{\int_a^{a + e^{i\phi} (b - a)} (f(x))^\frac{1}{e^{i\phi}(b - a)} \, dx}
$$

$$
\leq e^{\int_a^{a + e^{i\phi} (b - a)} (f(x))^\frac{1}{e^{i\phi}(b - a)} \, dx}
$$

$$
= e^{\int_a^{a + e^{i\phi} (b - a)} (\ln(f(x)) - (f(x))^\frac{1}{e^{i\phi}(b - a)} \, dx)
$$

$$
= e^{\int_a^{a + e^{i\phi} (b - a)} (\ln(f(x)) - (f(x))^\frac{1}{e^{i\phi}(b - a)} \, dx)
$$

$$
= e^{\int_a^{a + e^{i\phi} (b - a)} (\ln(f(x)) - (f(x))^\frac{1}{e^{i\phi}(b - a)} \, dx)
$$

$$
= e^{\int_a^{a + e^{i\phi} (b - a)} (\ln(f(x)) - (f(x))^\frac{1}{e^{i\phi}(b - a)} \, dx)
$$

$$
= e^{\int_a^{a + e^{i\phi} (b - a)} (\ln(f(x)) - (f(x))^\frac{1}{e^{i\phi}(b - a)} \, dx)
$$

$$
= e^{\int_a^{a + e^{i\phi} (b - a)} (\ln(f(x)) - (f(x))^\frac{1}{e^{i\phi}(b - a)} \, dx)
$$

$$
= e^{\int_a^{a + e^{i\phi} (b - a)} (\ln(f(x)) - (f(x))^\frac{1}{e^{i\phi}(b - a)} \, dx)
$$

$$
= e^{\int_a^{a + e^{i\phi} (b - a)} (\ln(f(x)) - (f(x))^\frac{1}{e^{i\phi}(b - a)} \, dx)
$$

Hence

$$
\left(\int_a^{a + e^{i\phi} (b - a)} (f(x))^\frac{1}{e^{i\phi}(b - a)} \, dx \right) \leq \frac{(f(b))^{f(b)} - f(a)^{f(a)}}{e}. \quad (2.8)
$$

\[\square\]
Corollary 3.2. If $f : K = [a, b] \to (0, \infty)$ is a convex function on the interval of real numbers in K, and $a, b \in K$, then

$$\left(\int_a^b (f(x))^\varphi dx \right)^\frac{1}{\varphi} \leq \left(\frac{f(b) + f(a)}{2} \right)^\varphi.$$

Proof. From Theorem 1 we get this inequality for $\phi = 0$. \hfill \Box

Theorem 3.3. If $f : K \to (0, \infty)$ is a log-ϕ-convex function on K, then

$$\left(\int_a^b (f(x))^\varphi dx \right)^\frac{1}{\varphi} \leq G(f(a), f(b)) \leq L(f(a), f(b)) \leq A(f(a), f(b)),$$

where $G(., .)$, $L(., .)$, $A(., .)$ are geometric, logarithmic and arithmetic means, respectively.

Proof. Since f is a convex function, we have

$$\int_a^{a+e^{\varphi}(b-a)} (f(x))^\varphi dx = e^{-\varphi(b-a)} \int_a^{a+e^{\varphi}(b-a)} (\ln(f(x)))^\varphi dx$$

$$= e^{\varphi(b-a)} \int_0^1 \ln \left(f(a + te^{\varphi}(b-a)) \right) dt$$

$$\leq e^{\varphi(b-a)} \int_0^1 \ln \left(f(a)^{-1} f(b)^{t} \right) dt$$

$$= e^{\varphi(b-a)} \int_0^1 (1-t) \ln f(a) + t \ln f(b) dt$$

$$= e^{\varphi(b-a)} \left\{ \int_0^1 \frac{\ln f(b) - \ln f(a) + t \ln f(b) dt}{2} \right\}$$

$$= e^{\varphi(b-a)} \left\{ \frac{\ln f(b) + \ln f(a)}{2} \right\}$$

$$= (\frac{\ln f(b) + \ln f(a)}{2})^\varphi$$

$$= (f(a), f(b))^\varphi \leq \left((\frac{f(a) + f(b)}{2})^\varphi \right).$$

Hence,

$$\left(\int_a^b (f(x))^\varphi dx \right)^\frac{1}{\varphi} \leq \sqrt{f(a) \cdot f(b)} = G(f(a), f(b))$$

$$\leq L(f(a), f(b)) \leq \frac{f(a) + f(b)}{2} = A(f(a), f(b)).$$

\hfill \Box
Corollary 3.4. If \(f : K = [a, b] \to (0, \infty) \) is a log convex function on the interval \([a, b]\), then

\[
\left(\int_a^b (f(x))^d \right)^{\frac{1}{d}} = G(f(a), f(b)) \leq L(f(a), f(b)) \leq A(f(a), f(b)).
\]

Proof. From Theorem 3, we obtain this inequality for \(\phi = 0 \).

\[\square \]

Theorem 3.5. Let \(f, g : K \to (0, \infty) \) be log-\(\phi \)-convex functions on the interval of real numbers in \(K^o \) and \(a, b \in K^o \). Then

\[
\left(\int_a^{a+e^{2\phi}(b-a)} \left(f(x)^{g(x)} \right)^d \right)^{\frac{1}{d}} \leq \sqrt{f(a)f(b).g(a)g(b)} = G(f(a)f(b), g(a)g(b)) \leq L(f(a)f(b), g(a)g(b)) \leq \frac{f(a)f(b) + g(a)g(b)}{2}.
\]

Proof. As \(f, g \) are log-\(\phi \)-convex functions, therefore

\[
\begin{align*}
\int_a^{a+e^{2\phi}(b-a)} \left(f(x)^{g(x)} \right)^d &= e^{\int_a^{a+e^{2\phi}(b-a)} \left(\ln(f(x))g(x) \right)^d dx} \\
&= e^{\int_a^{a} \left(\ln(f(a))g(a) \right)^d dx} e^{\int_a^{e^{2\phi}(b-a)} \left(\ln(f(a))g(a) \right)^d dx} \\
&= e^{\int_a^{a} \left(\ln(f(a))g(a) \right)^d dx} e^{\int_a^{e^{2\phi}(b-a)} \left(\ln(f(a))g(a) \right)^d dx} \\
&= e^{\frac{1}{2} \left(\ln(f(a))g(a) \right)^d dx} e^{\frac{1}{2} \left(\ln(f(a))g(a) \right)^d dx} \\
&= \left(e^{\left(\ln(f(a))g(a) \right)^d dx} \right)^{\frac{1}{2}} e^{\frac{1}{2} \left(\ln(f(a))g(a) \right)^d dx} \\
&= \left(f(a)f(b).g(a)g(b) \right)^{\frac{1}{2}} e^{\frac{1}{2} \left(\ln(f(a))g(a) \right)^d dx} \\
&= \left(G(f(a)f(b), g(a)g(b)) \right)^{\frac{1}{2}} e^{\frac{1}{2} \left(\ln(f(a))g(a) \right)^d dx} \\
&\leq L(f(a)f(b), g(a)g(b))^{\frac{1}{2}} e^{\frac{1}{2} \left(\ln(f(a))g(a) \right)^d dx} \\
&\leq \frac{f(a)f(b) + g(a)g(b)}{2}.
\end{align*}
\]
Hence
\[
\left(\int_a^{a+e^{i\phi}(b-a)} (f(x)g(x))^\frac{1}{2} \right) dx \\
\leq \sqrt{f(a)f(b), g(a)g(b)} \\
= G(f(a)f(b), g(a)g(b)) \\
\leq L(f(a)f(b), g(a)g(b)) \\
\leq A(f(a)f(b), g(a)g(b)).
\]

\[\square\]

Corollary 3.6. If \(f, g : K = [a, b] \to (0, \infty) \) is a log convex functions on the interval of real numbers in \(K^\circ \) and \(a, b \in K^\circ \), then
\[
\left(\int_a^{b} (f(x)g(x))^\frac{1}{2} \right) dx \\
\leq \sqrt{f(a)f(b), g(a)g(b)} = G(f(a)f(b), g(a)g(b)) \\
\leq L(f(a)f(b), g(a)g(b)) \\
\leq A(f(a)f(b), g(a)g(b)).
\]

\textbf{Proof.} This follows from Theorem 5 by taking \(\phi = 0 \). \[\square\]

\textbf{Theorem 3.7.} If \(f, g : K \to (0, \infty) \) are differentiable log-\(\phi \)-invex functions on the interval of real numbers in \(K^\circ \) and \(a, b \in K^\circ \), then
\[
\int_a^{a+e^{i\phi}(b-a)} (2f(x)g(x))^dx \\
\geq \int_a^{a+e^{i\phi}(b-a)} \left[f \left(\frac{2a+e^{i\phi}(b-a)}{2} \right) g(x) \exp \left[\left(\frac{f' \left(\frac{2a+e^{i\phi}(b-a)}{2} \right)}{f \left(\frac{2a+e^{i\phi}(b-a)}{2} \right)}, x - \frac{2a+e^{i\phi}(b-a)}{2} \right) \right] \right] dx
\]
\[
\times f(x) \exp \left[\left(\frac{g' \left(\frac{2a+e^{i\phi}(b-a)}{2} \right)}{g \left(\frac{2a+e^{i\phi}(b-a)}{2} \right)}, x - \frac{2a+e^{i\phi}(b-a)}{2} \right) \right] \right] dx.
\]

\textbf{Proof.} Since \(f, g \) are differentiable log-\(\phi \)-invex functions. So, we have
\[
\log f(x) - \log f(y) \geq \left(\frac{f'(y)}{f(y)}, x - y \right), \text{ and}
\]
\[
\log g(x) - \log g(y) \geq \left(\frac{g'(y)}{g(y)}, x - y \right) \quad \forall \ g(x), g(y) \in K,
\]
which implies that
\[
\log \frac{f(x)}{f(y)} \geq \left(\frac{f'(y)}{f(y)}, x - y \right).
\]

That is,
\[
f(x) \geq f(y) \exp \left[\left(\frac{f'(y)}{f(y)}, x - y \right) \right] \quad \text{(3.1)}
\]
\[
g(x) \geq g(y) \exp \left[\left(\frac{g'(y)}{g(y)}, x - y \right) \right]. \quad \text{ (3.2)}
\]
Multiplying on both sides of (3.1) and (3.2) by \(g(x)\) and \(f(x)\), respectively and then adding the resultants, we have

\[
2f(x)g(x) \geq g(x)f(y) + \exp \left[\frac{f'(y)}{f(y)}(x - y) \right]
\]

\[
	imes \exp \left[\frac{g'(y)}{g(y)}(x - y) \right] + f(x)g(y)\exp \left[\frac{g(y)}{f(y)}(x - y) \right].
\]

(3.3)

By taking \(y = \frac{2a + e^{i\phi}(b - a)}{2}\) in (3.3), we obtain that

\[
2f(x)g(x) \geq g(x)f \left(\frac{2a + e^{i\phi}(b - a)}{2} \right) \exp \left[\frac{f'(x)}{f \left(\frac{2a + e^{i\phi}(b - a)}{2} \right)}(x - 2a + e^{i\phi}(b - a)) \right]
\]

\[
+ f(x)g \left(\frac{2a + e^{i\phi}(b - a)}{2} \right) \exp \left[\frac{g'(x)}{g \left(\frac{2a + e^{i\phi}(b - a)}{2} \right)}(x - 2a + e^{i\phi}(b - a)) \right],
\]

\[
\int_a^{a + e^{i\phi}(b - a)} (2f(x)g(x)) \, dx
\]

\[
\geq \int_a^{a + e^{i\phi}(b - a)} g(x) \exp \left[\frac{f'(x)}{f \left(\frac{2a + e^{i\phi}(b - a)}{2} \right)}(x - 2a + e^{i\phi}(b - a)) \right] + g \left(\frac{2a + e^{i\phi}(b - a)}{2} \right) \, dx
\]

\[
\times f(x) \exp \left[\frac{g'(x)}{g \left(\frac{2a + e^{i\phi}(b - a)}{2} \right)}(x - 2a + e^{i\phi}(b - a)) \right]
\]

\[
\]
Proof. Since \(f, g \) are \(\phi \)-convex functions, we have
\[
\int_a^{a+e^\phi(b-a)} (f(x)g(x))^dx = e^{e^\phi(b-a)} \int_a^{a+e^\phi(b-a)} \ln(f(x)g(x))dx
\]
\[
= e^{e^\phi(b-a)} \int_a^{a+e^\phi(b-a)} \ln((f(a)+tf(b))(1-t))^2 \, dt
\]
\[
= e^{e^\phi(b-a)} \int_a^{a+e^\phi(b-a)} \ln(f(a)+tf(b)-f(a)) \, dt
\]
\[
= e^{e^\phi(b-a)} \ln(f(a)+tf(b)-f(a)) \int_a^{a+e^\phi(b-a)} \frac{1}{f(a)+tf(b)-f(a)} \, dt
\]
\[
= e^{e^\phi(b-a)} \ln(f(b)(b)-f(a)(a)) \int_a^{a+e^\phi(b-a)} \frac{1}{f(b)(b)-f(a)(a)} \, dt
\]
\[
= e^{e^\phi(b-a)} \ln(f(b)(b)-f(a)(a)) \int_a^{a+e^\phi(b-a)} \frac{1}{f(b)(b)-f(a)(a)} \, dt
\]
\[
= e^{e^\phi(b-a)} \ln(f(b)(b)-f(a)(a)) \int_a^{a+e^\phi(b-a)} \frac{1}{f(b)(b)-f(a)(a)} \, dt
\]
\[
\int_a^{a+e^\phi(b-a)} (f(x)g(x))^dx \leq e^{e^\phi(b-a)} \ln(f(b)(b)-f(a)(a)) \int_a^{a+e^\phi(b-a)} \frac{1}{f(b)(b)-f(a)(a)} \, dt
\]

Hence
\[
\left(\int_a^{a+e^\phi(b-a)} (f(x)g(x))^dx \right)^{\frac{1}{e^{e^\phi(b-a)}}} \leq e^{e^\phi(b-a)} \ln(f(b)(b)-f(a)(a)) \int_a^{a+e^\phi(b-a)} \frac{1}{f(b)(b)-f(a)(a)} \, dt
\]

Corollary 3.10. If \(f, g : K = [a, b] \to (0, \infty) \) are convex functions on the interval of real numbers in \(K^\circ \) (the interior of \(K \)) and \(a, b \in K^\circ \), then
\[
\left(\int_a^b (f(x)g(x))^dx \right)^{\frac{1}{e^{e^\phi(b-a)}}} \leq e^{e^\phi(b-a)} \ln(f(b)(b)-f(a)(a)) \int_a^b \frac{1}{f(b)(b)-f(a)(a)} \, dx
\]

Proof. Take \(\phi = 0 \) in Theorem 9.

Theorem 3.11. If \(f, g : K \to (0, \infty) \) are \(\phi \)-convex and log-\(\phi \)-convex functions, respectively on the interval of real numbers \(K^\circ \) and \(a, b \in K^\circ \), then
\[
\left(\int_a^{a+e^\phi(b-a)} (f(x)g(x))^dx \right)^{\frac{1}{e^{e^\phi(b-a)}}} \leq e^{e^\phi(b-a)} \ln(f(b)(b)-f(a)(a)) \int_a^{a+e^\phi(b-a)} \frac{1}{f(b)(b)-f(a)(a)} \, dt
\]
\[
\leq e^{e^\phi(b-a)} \ln(f(b)(b)-f(a)(a)) \int_a^{a+e^\phi(b-a)} \frac{1}{f(b)(b)-f(a)(a)} \, dt
\]
\[
\leq e^{e^\phi(b-a)} \ln(f(b)(b)-f(a)(a)) \int_a^{a+e^\phi(b-a)} \frac{1}{f(b)(b)-f(a)(a)} \, dt
\]
Proof. Let \(f, g \) be \(\phi \)-convex and log-\(\phi \)-convex functions, respectively. Then

\[
\int_a^{a+e^{i\phi}(b-a)} (f(x)g(x)) \, dx = e^{\int_a^{a+e^{i\phi}(b-a)} \ln(f(x)g(x)) \, dx}
\]

\[
= e^{e^{i\phi}(b-a)} \int_0^1 \ln(f(a+tf-a)g(a+tf-a)) \, dt
\]

\[
\leq e^{e^{i\phi}(b-a)} \int_0^1 (\ln(1-t) f(a)+tf(b)) \ln((g(a))^{1-t}(g(b))^t) \, dt
\]

\[
= e^{e^{i\phi}(b-a)} \int_0^1 (\ln(1-t) f(a)+tf(b)) (1-t) \ln(g(a)) + t \ln(g(b)) \, dt
\]

\[
= e^{e^{i\phi}(b-a)} \{ \int_0^1 (\ln(1-t) f(a)+tf(b)) \, dt + e^{\int_0^1 (1-t) \ln(g(a)) + t \ln(g(b))) \, dt \}
\]

\[
= e^{e^{i\phi}(b-a)} \{ \ln f(b) - (f(b) - f(a)) \int_0^1 \frac{1}{f(b) - f(a)} \, dt + \ln(g(a), g(b)) \}
\]

\[
= e^{e^{i\phi}(b-a)} \{ \ln f(b) - 1 + \ln(G(g(a), g(b))) \}
\]

\[
= \left[\frac{(f(b))^{\frac{f(a)}{f(b)-f(a)}} \cdot (f(a))^{\frac{f(a)}{f(b)-f(a)}} \cdot G(g(a), g(b))}{e} \right] e^{e^{i\phi}(b-a)}
\]

Hence

\[
\left(\int_a^{a+e^{i\phi}(b-a)} (f(x)g(x)) \, dx \right)^{\frac{1}{e^{i\phi}(b-a)}}
\]

\[
\leq \left(\frac{(f(b))^{\frac{f(b)}{f(b)-f(a)}} \cdot (f(a))^{\frac{f(a)}{f(b)-f(a)}} \cdot G(g(a), g(b))}{e} \right)
\]

\[
\leq \left(\frac{(f(b))^{\frac{f(b)}{f(b)-f(a)}} \cdot (f(a))^{\frac{f(a)}{f(b)-f(a)}} \cdot L(g(a), g(b))}{e} \right)
\]

\[
\leq \left(\frac{(f(b))^{\frac{f(b)}{f(b)-f(a)}} \cdot (f(a))^{\frac{f(a)}{f(b)-f(a)}} \cdot A(g(a), g(b))}{e} \right)
\]
Corollary 3.12. Let $f, g : K = [a, b] \rightarrow (0, \infty)$ are convex and log convex functions, respectively on the interval of real numbers in K° and $a, b \in K^\circ$, then

\[
\left(\int_a^b (f(x)g(x)) \, dx \right)^{\frac{1}{b-a}} \leq \left(\frac{f(b)}{\tau_{a,b}^{f(b)}} \cdot \frac{f(a)}{\tau_{a,b}^{f(a)}} \cdot \frac{G(g(a), g(b))}{e} \right) \leq \left(\frac{f(b)}{\tau_{a,b}^{f(b)}} \cdot \frac{f(a)}{\tau_{a,b}^{f(a)}} \cdot \frac{L(g(a), g(b))}{e} \right) \leq \left(\frac{f(b)}{\tau_{a,b}^{f(b)}} \cdot \frac{f(a)}{\tau_{a,b}^{f(a)}} \cdot \frac{A(g(a), g(b))}{e} \right).
\]

Proof. The result follows from Theorem 11, if we take $\phi = 0$. \qed

Acknowledgments. Authors are thankful to the reviewers for their useful comments and remarks which improved the presentation of this paper.

References

MUHAMMAD AAMIR ALI, DEPARTMENT OF MATHEMATICS, GOVERNMENT COLLEGE UNIVERSITY FAISLABAD, SAHIWAL CAMPUS, PAKISTAN, MUJAHID ABBAS, DEPARTMENT OF MATHEMATICS, GOVERNMENT COLLEGE UNIVERSITY, LAHORE 54000, PAKISTAN AND DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS, UNIVERSITY OF PRETORIA, LYNNWOOD ROAD, PRETORIA 0002, SOUTH AFRICA, AZBAR ALI ZAFAR, DEPARTMENT OF MATHEMATICS, GOVERNMENT COLLEGE UNIVERSITY, LAHORE 54000

E-mail address: mahr.muhammad.aamir@gmail.com