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Abstract

This study provides a theoretical analysis on the effects of mone-

tary and fiscal policy lags on equilibrium determinacy. Local equilib-

rium determinacy is shown to be achieved by applying active monetary

and passive fiscal policy in discrete-time New Keynesian (NK) mod-

els that include a fiscal policy rule with a time lag in policy response.

However, in models with money-in-the-production function formation,

equilibrium indeterminacy can occur even under these policy actions.

We show that the above-mentioned policy implications can be derived

from a continuous-time NK model that does not introduce a policy

lag. We then introduce monetary and fiscal policy lags into the model

and demonstrate that both or either of these policy lags can resolve

the problem of indeterminacy.
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1 Introduction

This study examines the effects of monetary and fiscal policy lags on local

equilibrium determinacy by developing a continuous-time New Keynesian

(NK) model. The model economic system is expressed as delay-differential

equations. Initially, few NK scholars examined such a type of system. More-

over, policymakers may face a situation of delay in policy implementation

due to political reasons. Hence, we believe that this study is important from

both theoretical and practical aspects.

NK models have often been used as framework to analyze the effects of

monetary policies on equilibrium determinacy.1 These models are based on

the optimizing behavior of economic agents. In addition, the models assume

the stickiness associated with changes in prices and nominal wages, implying

that they are short-term or medium-term models.

In the simplest NK model, wherein the nominal interest rate responds

only to the inflation rate, the following policy norm can be obtained: to

achieve local equilibrium determinacy, the monetary policy should be “ac-

tive”; that is, the nominal interest rate’s response should be more than one

unit in case of a one-unit change in inflation rate. (Conversely, if the nominal

interest rate’s response is less than one unit, the policy is referred to as “pas-

sive.”) This is the well-known proposition known as the “Taylor principle.”

Some notable studies have demonstrated that even if the Taylor principle

is not satisfied, equilibrium determinacy can be established. For example,

Meng and Yip (2004), Bilbiie (2008), and Gliksberg (2009) show, respectively,

that equilibrium determinacy can be achieved by assuming endogenous in-

vestment, limited asset market participation, and the existence of capital

adjustment costs.

Furthermore, Leeper (1991) examined the interaction between monetary

and fiscal policies by using an optimizing model that does not include price

and nominal wage stickiness. As for fiscal policy, he assumed that the fiscal

authority changes the amount of lump-sum tax according to fluctuations in

total government liabilities. If the fiscal authority implements a policy with-

out abiding by budget discipline, the policy is considered active. Conversely,

if the fiscal authority seeks to keep the total government liabilities consistent

3



with income, implying a Ricardian-type fiscal regime, the policy is consid-

ered passive. Leeper (1991) gives two possible combinations of monetary

and fiscal policies for local equilibrium determinacy: an active monetary pol-

icy should be combined with a passive fiscal policy, and a passive monetary

policy should be combined with an active fiscal policy.

Furthermore, Schmitt-Grohé and Uribe (2007) and Kumhof et al. (2010)

developed Leeper’s model to include price stickiness; that is, they developed

Leeper’s model into NK models. Their analyses followed Leeper (1991) by

assuming rules based on the responses of not only lump-sum taxes but also

the income tax rate to the total government liabilities. Their studies basically

confirmed Leeper’s results.

In these studies, tax rates are assumed to respond to a past (one period

earlier) value of government liabilities. In other words, they assume the

presence of a time lag. This situation can be described by using general

terms as follows: a variable evaluated at period t, zt, responds to another

variable evaluated not at time t, xt, but at time t − 1, xt−1. In discrete-

time models, as those referred to above, the characterization of the systems’

dynamics involves no analytical difficulty, because they are simply standard

systems of difference equations. However, in continuous-time models, the

presence of a time lag considerably complicates the analysis because the

models include terms ẋt, xt, and xt−θ, where θ represents a time lag. This is

the well-known system called “delay-differential equation system” (in other

words, differential-difference equation system).2

Tsuzuki (2014, 2015) developed continuous-time NK models that intro-

duce a time lag into monetary policy implementation.3 He demonstrates

that a time lag may resolve the problem of indeterminacy in models with

money-in-the-production-function (MIPF). In the present study, we develop

a similar model that includes both monetary and fiscal policy lags and per-

form a local equilibrium determinacy analysis. For the analysis, we use a

numerical method developed by Lin and Wang (2012) in order to visualize

the interaction between the two policy lags.

This paper is structured as follows. In Section 2, we discuss the behavior

of economic agents in a model economy. Section 3 analyzes the local dynamics

of a case where there is no time lag. Section 4 evaluates a case indicating
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monetary and fiscal policy lags. Section 5 concludes the paper.

2 The model

In this section, we propose a simple continuous-time NK model following

Benhabib et al. (2003). We construct the model economy using monetary

and fiscal authorities and household–firm units indexed by i (we normalize

their total at unity; that is, i ∈ [0, 1]). Household–firm unit i produces and

sells good i under monopolistic competition. Furthermore, household–firm

units aggregate the heterogeneous types of goods and then consume them as

a composite good.

We describe monetary and fiscal policy implementations following Leeper

(1991) and Schmitt-Grohé and Uribe (2007). Monetary authorities manipu-

late the nominal interest rate according to fluctuations in the inflation rate,

whereas the fiscal authority manipulates the income tax rate according to

fluctuations in total government liabilities (i.e., money and bonds). Leeper

(1991) examines the case of lump-sum tax, a non-distortionary tax, and

Schmitt-Grohé and Uribe (2007) examine the case of income tax, a distor-

tionary tax. This study deals with the latter, income tax, emphasizing the

generality of specification. For simplicity, we assume that the fiscal author-

ity spends its revenue but its expenditure does not affect the production or

utility of household–firm units.

First, we describe the demand for heterogeneous goods and the aggrega-

tion of such goods by household–firm units.

2.1 Intratemporal optimization

Each household–firm unit aggregates various types of goods via the Dixit–

Stiglitz function4 :

y =

[
∫ 1

0

y
φ−1

φ

i di

]

φ

φ−1

, (1)

where y is the quantity of the composite good, yi is the quantity of good i,

and φ (> 1) is the elasticity of substitution between heterogeneous goods.5
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Given the quantity of a composite good, the price of composite good p,

and the price of good i, pi, the demand for good i is determined by mini-

mizing the cost
∫ 1

0
piyidi subject to Equation (1). The first-order optimality

conditions for this problem yield the following expression6 :

yi =

(

pi
p

)−φ

y, (2)

where p =
[

∫ 1

0
p1−φi di

]
1

1−φ

. Equation (2) is a demand function for good i.

2.2 Intertemporal optimization

In this subsection, we describe the consumption behavior, price setting, and

production performance of household–firm units. Household–firm unit i pro-

duces good i using labor force ℓi. Assuming a linear technology, we specify

the production function as follows:

yi = zℓi, (3)

where z is a constant representing productivity.

Household–firm units obtain utility from consumption and money hold-

ings and disutility from labor supply and price revisions. We specify the

utility function as follows:

U(ci, mi, ℓi, πi) = u(ci, mi)−
ℓ1+ψi

1 + ψ
− η

2
(πi − π∗)2, (4)

where ci is the consumption of a composite good, mi is real money balance,

πi = ṗi/pi is the price change rate of good i (π∗ denotes the steady-state

value of π), ψ > 0, and η > 0.7 We use the following normal assumptions

for utility function: uc = ∂u/∂ci > 0, ucc = ∂2u/∂c2i < 0, um = ∂u/∂mi > 0,

and umm = ∂2u/∂m2
i < 0. Because of the existence of the price revision cost,

η
2
(πi−π∗)2, prices become sticky. Thus, η can be interpreted as representing

price stickiness.

The assets of household–firm unit i consist of money and bonds: Ai =

Mi + Bi, where Ai represents nominal assets, Mi represents nominal money

balances, and Bi represents nominal bonds. Assets can be increased through
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income and bond interest inflows and decreased through consumption and

income tax outflows. Thus, the following equation holds: Ȧi = (1− τ)piyi +

RBi−pci, where R is the nominal interest rate for bonds and τ is the income

tax rate. We can rewrite this equation in real terms as follows:

ȧi = (1− τ)
pi
p
yi + rai − ci − Rmi, (5)

where ai = Ai/p represents real assets and r = R − π (π = ṗ/p) is the real

interest rate.

Household–firm unit i determines ci, mi, and πi by maximizing its dis-

counted utility stream represented by
∫∞

0
U(ci, mi, ℓi, πi)e

−ρtdt (where ρ > 0

is the discount rate), subject to the restrictions of Equations (2), (3), (5),

and π = ṗ/p.

The current-value Hamiltonian function for this optimization problem can

be expressed as follows:

H = u(ci, mi)−
1

1 + ψ

(

1

z

(

pi
p

)−φ

y

)1+ψ

− η

2
(πi − π∗)2

+ µ1

[

(1− τ)
pi
p

(

pi
p

)−φ

y + rai − ci −Rmi

]

+ µ2πipi,

where µ1 and µ2 are the co-state variables of state variables ai and pi, re-

spectively. The first-order conditions for optimality are

∂H
∂ci

= uc(ci, mi)− µ1 = 0, (6)

∂H
∂mi

= um(ci, mi)− µ1R = 0, (7)

∂H
∂πi

= −η(πi − π∗) + µ2pi = 0, (8)

µ̇1 = ρµ1 −
∂H
∂ai

= ρµ1 − rµ1, (9)

µ̇2 = ρµ2 −
∂H
∂pi

= ρµ2 −
(yi
z

)ψ φ

z

yi
pi

− µ1(1− φ)(1− τ)
yi
p
− µ2πi. (10)

The second-order conditions are expressed as follows:

ucc < 0; D ≡ uccumm − u2cm > 0. (11)
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Furthermore, economically significant solutions would require satisfying the

transversality conditions expressed as

lim
t→∞

ai(t)e
−ρt = 0,

lim
t→∞

pi(t)e
−ρt = 0.

As the behavior of all the household–firm units is based on the same equa-

tions (i.e., they are symmetric), we can drop subscript i from all variables.

Thus, from Equations (8) and (10), we obtain the following equation:

π̇ = ρ(π − π∗)− φ

η
z−(1+ψ)y1+ψ +

(φ− 1)(1− τ)

η
µ1y. (12)

This is referred to as the NK Phillips curve.

Furthermore, by solving Equation (7) for m, we obtain

m = m(c, µ1, R); (13)

mc =
∂m

∂c
= − ucm

umm
; uµ =

∂m

∂µ1
=

R

umm
< 0; mR =

∂m

∂R
=

µ1

umm
< 0.

By substituting this expression into Equation (6) and solving for c, we obtain

c = c(µ1, R); (14)

cµ =
∂c

∂µ1

=
umm − ucmR

D
; cR =

∂c

∂R
= −ucmµ1

D
.

2.3 Monetary policy

2.3.1 Interest rate rule

A monetary policy rule reflecting the behavior of monetary authorities and

where the nominal interest rate is changed in response to fluctuations in the

inflation rate can be expressed as follows:

R = R(π); R′(π) > 0; R(π∗) = R̄, (15)

where R̄ is the nominal interest rate corresponding to the target inflation rate,

which is considered to be its steady-state value here; R′(π∗) > 1 represents an

active monetary policy, and R′(π∗) < 1 represents a passive one. This type
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of monetary policy rule is adopted in Leeper (1991) and is the most popular

specification in NK economic theory. Indeed, inflation targeting policies are

observed in many developed countries. In some models, the output and asset

prices are added as target variables; however, we investigate the simplest and

most standard version.

2.3.2 Generalized interest rate rule

The generalized interest rate rule, which postulates that the nominal interest

rate responds to a weighted stream of inflation rates, can be represented as

follows:

R(t) = R(πg(t)); πg(t) ≡
∫ t

−∞

δ(s)π(s)ds, (16)

where δ(s) is a weighting factor for the inflation rate stream,
∫ t

−∞
π(s)ds,

and is defined as follows:

δ(s) =

(

n

θ1

)n
(t− s)n−1

(n− 1)!
e
− n

θ1
(t−s)

,

where n takes positive integer numbers, θ1 > 0, and
∫ t

−∞
δ(s)ds = 1. The

mean of this function is given by θ1 and the variance is given by θ21/n.

If n → 1, then δ(s) becomes an exponential function, (1/θ1)e
−(1/θ1)(t−s),

implying that monetary authorities place greatest emphasis on the present

(see Fig. 1).8 The backward-looking interest rate rule examined by Ben-

habib et al. (2003) corresponds to this case, wherein θ1 measures the degree

to which the monetary authority is backward looking. When n ≥ 2, δ(s)

becomes a unimodal function that becomes maximum at s = t− (n−1)θ1/n,

and when n→ ∞, it becomes a vertical line at t− θ1.

[Figure 1]

Therefore, the standard monetary policy rule in Equation (15) can be

considered a special case of Equation (16) corresponding to the case where

n→ ∞ and θ1 → 0.
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2.3.3 Interest rate rule with a delay

When a delay is present in an interest rate’s response to fluctuations in the

inflation rate, the interest rate rule can be expressed as follows:

R(t) = R(π(t− θ1)). (17)

This expression corresponds to the case where n→ ∞ in Equation (16), and

θ1 represents a time lag in monetary policy implementation.

2.4 Fiscal policy

The budget constraint equation for the public sector is expressed as follows:

Ḃ = RB − Ṁ − τpy + pg, where g represents the real government spending,

which is assumed to be constant. By rewriting this equation in real terms,

we obtain

ȧ = ra− Rm− τy + g. (18)

2.4.1 Tax rate rule

As adopted in Schmitt-Grohé and Uribe (2007), manipulation of the income

tax rate according to fluctuations in the total real government liabilities, a,

by the fiscal authority can be expressed as follows:

τ = τ(a); τ ′(a) > 0; τ(a∗) = τ̄ , (19)

where τ̄ is the income tax rate corresponding to the target level of total

government liabilities, which is considered as its steady-state value. Schmitt-

Grohé and Uribe (2007) only considered the case wherein a one period policy

delay exists in the government’s responses. However, we compare the case

with a positive policy lag and the case without a lag to emphasize the effects

of policy lags of economic stability.

By substituting Equation (19) into Equation (18) and focusing on the dy-

namics of a, we find that the dynamic path of the total government liabilities

is locally stable if
r∗

y∗
− τ ′(a∗) < 0.

Therefore, following the terminology of Leeper (1991), τ ′(a∗) > r∗/y∗ repre-

sents a passive fiscal policy and τ ′(a∗) < r∗/y∗ represents an active one.
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2.4.2 Tax rate rule with a delay

In case of a delay in the fiscal authority’s response to fluctuations in total

government liabilities, the tax rate rule is rewritten as follows:

τ(t) = τ(a(t− θ2)), (20)

where θ2 represents a time lag in fiscal policy implementation.

3 Case with no policy lags

To emphasize the effects of policy lags on local determinacy, we first consider

the local dynamics of the model economic system with no policy lags. By

using the equilibrium condition y = c + g for the goods market, the model

economy expressed in Equations (9), (12)–(15), and (19) can be summarized

in the following equation system:

µ̇1 = [ρ− R(π) + π]µ1,

π̇ = ρ(π − π∗)− φ

η
z−(1+ψ)[c(µ1, R(π)) + g]1+ψ + (1− τ(a))

φ− 1

η
µ1[c(µ1, R(π)) + g],

ȧ = [R(π)− π]a− R(π)m(c(µ1, R(π)), µ1, R(π))− τ(a)[c(µ1, R(π)) + g] + g.

(21)

The steady-state values of System (21) can be expressed as (µ∗
1, π

∗, a∗),

which satisfies the simultaneous equations as follows:

π∗ = R̄− ρ,

µ∗
1[c(µ

∗
1, R̄) + g]−ψ =

φ

(1− τ̄ )(φ− 1)
z−(1+ψ),

a∗ =
R̄m(c(µ∗

1, R̄), µ
∗
1, R̄) + τ̄(c(µ∗

1, R̄) + g)− g

ρ
.

(22)

Furthermore, the Jacobian matrix of System (21) evaluated at the steady

state can be expressed as

J1 =







0 −(R′ − 1)µ∗
1 0

P1 ρ− P2R
′ −τ ′ φ−1

η
µ∗
1y

∗

P3 (R′ − 1)a∗ + P4R
′ r∗ − τ ′y∗






,
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where9

P1 = −ψφ
η
z−(1+ψ)[c(µ∗

1, R̄) + g]ψcµ +
(1− τ̄)(φ− 1)

η
[c(µ∗

1, R̄) + g],

P2 = ψ
φ

η
z−(1+ψ)[c(µ∗

1, R̄) + g]ψcR,

P3 = −R̄(mccµ +mµ)− τ̄ cµ,

P4 = −[m(c(µ∗
1, R̄), µ

∗
1, R̄) + R̄(mccR +mR) + τ̄ cR].

Equation (14) indicates that the following relationships hold: P2 ≷ 0 ⇐⇒
cR ≷ 0 ⇐⇒ ucm ≶ 0. As shown by Feenstra (1986) and Carlstrom and

Fuerst (2003), the money-in-the-production-function (MIPF) model can be

seen as a special case of money-in-the-utility-function (MIUF) model. In the

case of a negative correlation between consumption and real money balances

(i.e., ucm < 0), the MIUF model is equivalent to the MIPF model. Therefore,

the case of P2 > 0 can be considered equivalent to an MIPF model.

The characteristic equation for System (21) can be given by

∆1(λ) ≡ |λI − J1| = λ3 + v1λ
2 + v2λ+ v3 = 0, (23)

where

v1 = −(ρ− P2R
′)− (r∗ − τ ′y∗),

v2 = P1(R
′ − 1)µ∗

1 + (ρ− P2R
′)(r∗ − τ ′y∗) + [(R′ − 1)a∗ + P4R

′]τ ′
φ− 1

η
µ∗
1y

∗,

v3 = −P1(R
′ − 1)µ∗

1(r
∗ − τ ′y∗)− P3(R

′ − 1)µ∗
1
2τ ′
φ− 1

η
y∗.

Equation (23) has three roots. Because c and π are both jump variables and

a is a non-jump variable, the equilibrium can only be locally determinate

when Equation (23) includes exactly two roots with positive real parts.

3.1 Conditions for determinacy

As the value of detJ1 (= −v3) equals the product of the roots, v3 > 0

must hold for determinacy. In this case, the signs of the three roots are

(++−) or (−−−). In addition, if at least one of the conditions for Routh–

Hurwitz stability10 (which provides necessary and sufficient conditions for
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the real parts of all the roots to be negative: v1 > 0; v2 > 0; v3 > 0; and

v4 ≡ v1v2 − v3 > 0) is not satisfied, then we can identify the pattern of the

signs as (++−). In this case, the equilibrium is locally determinate.

We now focus on R′ and τ ′, which indicate the responsiveness of monetary

and fiscal policies, respectively. Assume that

V1 = {(R′, τ ′) : v1 < 0},
V2 = {(R′, τ ′) : v2 < 0},
V3 = {(R′, τ ′) : v3 > 0},
V4 = {(R′, τ ′) : v4 < 0}.

Then, we can characterize the set of (R′, τ ′) that achieves local determinacy

as follows:

Determinacy = {V1 ∪ V2 ∪ V4} ∩ V3.

Henceforth, we would have to depend on a numerical method.

3.2 Numerical simulations

To perform numerical analysis, we specify the utility function as follows:

u(c,m) =
(cm)1−σ − 1

1− σ
,

where σ is the inverse of the intertemporal elasticity of substitution in con-

sumption. Other structural parameters are set as follows, in conjunction

with those outlined in Benhabib et al. (2003) (quarterly values): φ = 21;

ψ = 1; σ = 2; η = 350; ρ = 0.005; and R̄ = 0.015. For σ > 1, cR < 0 (hence,

P2 > 0) holds. Therefore, in this case, our model becomes equivalent to an

MIPF model.

Furthermore, the steady-state value of the income tax rate is set to equal

its average level of 0.2. In addition, g is set at 0.073 for the share of govern-

ment expenditure in the national income, g/y∗, to match its realistic value

of 0.19. Finally, constant productivity z is set at unity. Under these assump-

tions, we obtain the illustration of sets V1–V4, as shown in Fig. 2.
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[Figure 2]

The results implied by Fig. 2 are partly consistent with those of Kumhof

et al. (2010); that is, a local equilibrium determinacy can be realized using

a passive monetary policy (R′ < 1) accompanied by an active fiscal policy

(τ ′ < r∗/y∗ = 0.013)11 . However, unlike in Kumhof et al.’s (2010) model,

local determinacy cannot be achieved when monetary policy is active (R′ > 1)

and fiscal policy is passive (τ ′ > r∗/y∗). In this case, the signs of the real

parts of all roots are negative. Thus, indeterminacy occurs.

Kumhof et al. (2010) introduce money via a cash-in-advance constraint.

This assumption creates a situation similar to an MIUF model that corre-

sponds to the case of P2 < 0 in our model. If we assume σ < 1, then P2 < 0

holds. For example, by assuming σ = 0.9 and describing the sets V1–V4 on

the R′-τ ′ plane, we obtain Fig. 3. This figure demonstrates that our result

becomes completely consistent with that of Kumhof et al. (2010); namely,

equilibrium determinacy is achieved by applying an active monetary policy

accompanied by a passive fiscal policy.

[Figure 3]

Furthermore, Benhabib et al. (2003) and Carlstrom and Fuerst (2003)

demonstrate that equilibrium indeterminacy can occur even under an active

monetary policy in an MIPF model, regardless of whether it postulates dis-

crete time or continuous time. This suggests that the case of Fig. 2 can be

considered corresponding to the models proposed by Benhabib et al. (2003)

and Carlstrom and Fuerst (2003).12

Thus, in the case of no policy lag, the results derived from a discrete time

model correspond perfectly to those derived from a continuous time model.

In the next section, we examine the case where monetary and fiscal policy

lags are present. Specifically, we show that monetary and fiscal authorities

can avoid the equilibrium indeterminacy occurring in the case equivalent to

an MIPF model (P2 > 0) by utilizing such “time lags.”13 Therefore, in

the following discussion, we restrict the analysis to the case where −v3 =

detJ1 < 0.
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4 Case with positive policy lags

The model economic system when Equations (17) and (20) are used as the

interest rate rule and tax rate rule, respectively, can be expressed as follows:

µ̇1(t) = [ρ− R(π(t− θ1)) + π(t)]µ1(t),

π̇(t) = ρ(π(t)− π∗)− φ

η
z−(1+ψ)[c(µ1(t), R(π(t− θ1))) + g]1+ψ

+ (1− τ(a(t− θ2)))
φ− 1

η
µ1(t)[c(µ1(t), R(π(t− θ1))) + g],

ȧ(t) = [R(π(t− θ1))− π(t)]a(t)− R(π(t− θ1))m(c(µ1(t), R(π(t− θ1))), µ1(t), R(π(t− θ1)))

− τ(a(t− θ2))[c(µ1(t), R(π(t− θ1))) + g] + g.

(24)

This is a differential equation system with two delays.

The steady-state values of System (24) are given in Equation (22). By

linearizing System (24) around the steady state, the equations become

˙̂µ1(t) = −[R′π̂(t− θ1)− π̂(t)]µ∗
1,

˙̂π(t) = ρπ̂(t)− P2R
′π̂(t− θ1) + P1µ̂1(t)− τ ′

φ− 1

η
µ∗
1[c(µ

∗
1, R̄) + g]â(t− θ2),

˙̂a(t) = P3µ̂1(t)− a∗π̂(t) + (P4 + a∗)π̂(t− θ1) + r∗â(t)− τ ′[c(µ∗
1, R̄) + g]â(t− θ2),

(25)

where µ̂1(t) ≡ µ1(t) − µ∗
1, π̂(t) ≡ π(t)− π∗, and â(t) ≡ a(t)− a∗. Assuming

the exponential functions µ̂1(t) = C1e
λt, π̂(t) = C2e

λt, and â(t) = C3e
λt

(where C1, C2, and C3 are arbitrary constants and λ is an eigenvalue) as the

solutions to this system and plugging these functions into System (25), we

obtain the following:







λ −µ∗
1 +R′µ∗

1e
−θ1λ 0

−P1 λ− ρ+ P2R
′e−θ1λ τ ′ φ−1

η
µ∗
1y

∗e−θ2λ

−P3 a∗ − (P4 + a∗)R′e−θ1λ λ− r∗ + τ ′y∗e−θ2λ













µ̂1(t)

π̂(t)

â(t)






=







0

0

0






.

The determinant of the matrix on the left-hand side, which we denote as

∆2(λ), should be zero for non-trivial solutions to exist: that is,

∆2(λ) ≡ s0(λ) + s1(λ)e
−θ1λ + s2(λ)e

−θ2λ + s3(λ)e
−(θ1+θ2)λ = 0, (26)
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where

s0(λ) = λ3 − (ρ+ r∗)λ2 + (ρr∗ − P1µ
∗
1)λ+ P1µ

∗
1r

∗,

s1(λ) = P2R
′λ2 − P2R

′r∗λ+ P1R
′µ∗

1λ− P1R
′µ∗

1r
∗,

s2(λ) = τ ′y∗λ2 − ρτ ′y∗λ− a∗τ ′
φ− 1

η
µ∗
1y

∗λ+ P3µ
∗
1
2τ ′
φ− 1

η
y∗ − P1µ

∗
1τ

′y∗,

s3(λ) = P2R
′τ ′y∗λ+ (P4 + a∗)R′τ ′

φ− 1

η
µ∗
1y

∗λ− P3R
′µ∗

1
2τ ′
φ− 1

η
y∗ + P1R

′µ∗
1τ

′y∗.

Equation (26) is the characteristic equation for System (25).

Equation (26) has an infinite number of roots owing to the existence of

terms including the exponential functions e−θ1λ, e−θ2λ, and e−(θ1+θ2)λ.14 In

addition, unlike ordinary differential equations, delay-differential equations

require initial values that are evaluated not only in time t = t0 (present time)

but also in time t0 − θ1 ≤ t < t0 and t0 − θ2 ≤ t < t0 (past times). As µ1(t)

and π(t) are the jump variables, their initial values should be determined by

economic agents. However, in time t0, they can only determine the values

µ1(t0) and π(t0), because past values for these variables should be consid-

ered as given. Therefore, if there are exactly two roots with positive real

parts among the infinite number of roots, then the initial values are uniquely

determined; that is, the equilibrium is locally determinate. However, the

equilibrium will be indeterminate if less than two roots have positive real

parts, and the equilibrium will become unstable if more than two roots have

positive real parts (an equilibrium will not be present).

A numerical method developed by Lin and Wang (2012) can be used to

investigate an equation that includes exponential functions, as in Equation

(26).15

4.1 Preconditions

To apply Lin and Wang’s (2012) method, some preconditions need to be

examined; that is, Equation (26) should satisfy the following conditions:

(i) deg(s0(λ)) ≥ max{deg(s1(λ)), deg(s2(λ)), deg(s3(λ))};

(ii) ∆2(0) 6= 0;
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(iii) A solution common to all four polynomials s0(λ) = 0, s1(λ) = 0,

s2(λ) = 0, and s3(λ) = 0 does not exist (i.e., these are coprime);

(iv) limλ→∞(|s1(λ)/s0(λ)|+ |s2(λ)/s0(λ)|+ |s3(λ)/s0(λ)|) < 1.

While Condition (i) is satisfied by 3 > max{2, 2, 1}, Condition (ii) is

satisfied by ∆2(0) = P1µ
∗
1(r

∗ − τ ′y∗)(1 − R′) + P3µ
∗
1
2τ ′ φ−1

η
y∗(1− R′) = v3 =

−detJ1 6= 0. Condition (iii) can numerically be confirmed as follows: values

that satisfy s0(λ) = 0 are calculated as λ = −0.103, 0.005, 0.108. These

values cannot be the solutions to s3(λ) = 0 for {(R′, τ ′) : R′ ∈ (0, 3), τ ′ ∈
(0, 0.1)}. Therefore, Condition (iii) is satisfied. Finally, Condition (iv) is

satisfied by limλ→∞(|s1(λ)/s0(λ)|+ |s2(λ)/s0(λ)|+ |s3(λ)/s0(λ)|) = 0.

Now, we examine the effects of lags (θ1, θ2) on local equilibrium determi-

nacy. The procedure for the analysis is as follows:

(1) The points where pure imaginary roots appear, that is, the points where

the dynamics can change, are characterized (if they are present).16

These points are referred to as the “crossing points.”

(2) We describe the sets of crossing points as the “crossing curves” on the

(θ1, θ2) ∈ R
2
+ plane using numerical simulation.

(3) We indicate the existence of regions where local determinacy is achieved.

4.2 Crossing curves

We denote a pure imaginary root as λ = iω (where ω = imaginary part17

> 0, and i =
√
−1). By plugging this expression into Equation (26), we

obtain the following:

∆2(iω) = s0(iω) + s1(iω)e
−iωθ1 + s2(iω)e

−iωθ2 + s3(iω)e
−iω(θ1+θ2) = 0. (27)

We first characterize the values of ω that satisfy Equation (27). Accord-

ing to Lemma 3.2 in Lin and Wang (2012), ∆2(iω) = 0 holds for ω ∈ R+

satisfying the following:

F (ω) ≡ (|s0|2 + |s1|2 − |s2|2 − |s3|2)2 − 4(M2
1 +N2

1 ) < 0,

17



where

M1(ω) = Re(s2s̄3)− Re(s0s̄1),

N1(ω) = Im(s2s̄3)− Im(s0s̄1).

We denote the set of ω > 0 that satisfies F (ω) < 0 as Ω (crossing fre-

quency set). For ω ∈ Ω, the sets (θ1, θ2) satisfying Equation (27) (crossing

points) can be expressed as follows (see Equation 17 in Lin and Wang, 2012):

Θ± ≡ {(θ±1 (ω), θ∓2 (ω)) ∈ R
2
+}

=

{(±δ1(ω)− ϕ1(ω) + 2n1π

ω
,
∓δ2(ω)− ϕ2(ω) + 2n2π

ω

)

; n1, n2 ∈ Z

}

,

(28)

where

δ1(ω) = cos−1

(

|s0|2 + |s1|2 − |s2|2 − |s3|2

2
√

M2
1 +N2

1

)

; δ1 ∈ [0, π],

ϕ1(ω) = arg{s2s̄3 − s0s̄1}

= tan−1

(

Im(s2s̄3 − s0s̄1)

Re(s2s̄3 − s0s̄1)

)

,

δ2(ω) = cos−1

(

|s0|2 − |s1|2 + |s2|2 − |s3|2

2
√

M2
2 +N2

2

)

; δ2 ∈ [0, π],

M2(ω) = Re(s1s̄3)− Re(s0s̄2),

N2(ω) = Im(s1s̄3)− Im(s0s̄2),

ϕ2(ω) = arg{s1s̄3 − s0s̄2}

= tan−1

(

Im(s1s̄3 − s0s̄2)

Re(s1s̄3 − s0s̄2)

)

.

Lin and Wang (2012) also demonstrate that Θ+ and Θ− form a class of

continuous curves on R
2
+. We call these curves crossing curves. In the next

subsection, we illustrate an example of crossing curves using a numerical

simulation.

4.3 Numerical simulation

We assume the same parameter values and functional form of the utility func-

tion as in the previous section. Furthermore, we suppose that the monetary
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authorities implement an active policy (R′ = 1.5) and the fiscal authority

implements a passive policy (τ ′ = 0.09). Then, if monetary and fiscal policy

lags are not present (i.e., θ1 = θ2 = 0), indeterminacy occurs, wherein the

signs of the roots are (−−−), as shown in the previous section.

The crossing set Ω is calculated as ω ∈ (0.126, 0.460) (Fig. 4). For ω ∈ Ω,

we can describe Θ+ and Θ− as shown in Fig. 5. The solid curves represent

Θ+, and the dashed curves represent Θ−.

[Figure 4]

[Figure 5]

We call the direction of the curve corresponding to increasing ω as “pos-

itive direction.” When we move in the positive direction along curves Θ+

(Θ−), the region on the left-hand side of Θ+ (Θ−) has two more (less) roots

with positive real parts (Theorem 4.1 in Lin and Wang, 2012). In Fig. 5,

we use arrows to indicate the crossing directions to which roots with positive

real parts increase when lags (θ1, θ2) intersect with these curves. The region

on the end of an arrow has two more roots with positive real parts.

In the three regions indicated by D1, D2, and D3 in Fig. 5, exactly

two roots with positive real parts exist: therefore, the equilibrium is locally

determinate. Thus, we have the following proposition:

Proposition 4.1 Monetary and fiscal authorities can establish local equi-

librium determinacy by introducing lags into policy responses when the equi-

librium is indeterminate and where the signs of the roots are (−−−) under

policies without lags.

This proposition indicates that desirable combinations of monetary and

fiscal policy lags exist. If lags are too short, then equilibrium indeterminacy

will occur, and if they are too long, the equilibrium will become unstable.

Moreover, under any configuration of crossing curves, the number of roots

with positive real parts changes by two at a time when θ1 and θ2 intersect a

crossing curve. Hence, it is impossible for monetary and fiscal authorities to

achieve local determinacy by policy lags if the signs of the roots are (+−−)

under policies without a lag.
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5 Conclusion

In this paper, we examined the effects of monetary and fiscal policies on

local equilibrium determinacy by developing a continuous-time NK model

introducing delays into policy responses. We demonstrated that the respon-

siveness of policy variables to economic fluctuations as well as timings of

their implementation has a significant role in achieving local determinacy.

On the assumption of a plausible parameter set, indeterminacy can arise

under the combination of active monetary and passive fiscal policies when

no delays occur in policy implementation by the monetary and fiscal author-

ities. However, such indeterminacy can be resolved by setting lags in the

desirable regions, as indicated by D1–D3 in Fig. 5. This finding suggests

that the monetary and fiscal authorities may have to “purposefully” delay

their policies.

We also point that monetary and fiscal authorities have complementarity

in their reaction rates. That is, if the monetary policy lag is too short and

indeterminacy occurs, determinacy can be established by lengthening the

fiscal policy lag, and vice versa.

In any case, policy lags can have either stabilizing or destabilizing effects

on an economy.

Notes

1 The introductory textbooks for NK models include Woodford (2003), Walsh

(2010), and Gaĺı (2015).

2 One method to treat the “past” of a variable in continuous-time models is

to employ a weighted average of such a variable’s stream that extends from the

infinite past to the present, as in Benhabib et al. (2003). However, a time lag in

the strict sense cannot be represented by a variable’s weighted average, but should

be represented by a past value taken at a certain point in time.

3 Friedman (1948) is a pioneering work on policy lags.

4 See Dixit and Stiglitz (1977).

5 Heterogeneity of goods is reflected by the assumption of φ > 1. If the goods

are completely homogeneous (complete substitution), φ → 1.

6 See Blanchard and Kiyotaki (1987) for details.

20



7 The price revision cost is specified in a quadratic equation consistent with

that outlined by Rotemberg (1982). In addition, this cost can be interpreted as

the psychological stress due to price negotiations.

8 In Fig. 1, θ1 = 2.0 and t = 0.

9 Equation (22) is used to derive the expressions of P1 and P2.

10 See Chapter 18 in Gandolfo (2010).

11 In the case of distortionary taxes, as the income tax, the dynamic system

becomes indecomposable; that is, the law of motion of π is affected by a. Thus,

the bifurcation value of τ ′ (0.019) found in Fig. 2 slightly exceeds the value of

r∗/y∗ = 0.013.

12 The main contribution of Benhabib et al. (2003) was the finding that a

Hopf bifurcation can occur under an active monetary policy, indicating the pres-

ence of global indeterminacy. However, we emphasize here the point that an active

monetary policy and local indeterminacy are not mutually exclusive.

13 Time lags can increase the number of roots with positive real parts. In

models without a micro-foundation, as those proposed in Asada and Yoshida

(2001) and Yoshida and Asada (2007), this change implies destabilization. How-

ever, in our model, the change can achieve determinacy, implying that time lags

can stabilize an economy.

14 See Chapter 3 in Bellman and Cooke (1963) for details.

15 The merit of Lin and Wang’s (2012) method is that it can be applied to

the case where an equation includes not only exponential functions as e−θ1λ and

e−θ2λ but also the function e−(θ1+θ2)λ. If s3(λ) = 0, then we can use a different

method developed by Gu et al. (2005).

16 Condition (ii) ensures that zero cannot be a root.

17 We can assume that ω > 0 without losing generality because imaginary

roots are necessarily conjugated.
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