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EUROPEAN OPTION PRICING UNDER THE
REGIME-SWITCHING GARCH MODEL
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ABSTRACT. GARCH model and its extension is the most common and wide-
spread approach used in modeling volatility. However, the existing literature
indicates that these models are not able to capture structural changes in the
variance process. The financial markets are known to exhibit structural breaks
which may be caused by the changing variance process. Therefore, a model
that allows its parameters to change with time is necessary so as to account
for the structural variance changes. This study proposes a regime switching
GARCH model that is able to capture the changing variances in each regime.
The model is then utilized to estimate the European option prices for the
Russell 2000, Facebook and Google indices with an aim to compare its perfor-
mance with that of Black-Scholes and Regime switching models. The results
indicate that regime switching GARCH perform better than Black-Scholes and
Regime switching models when applied to long-dated options contract. How-
ever, Black-Scholes model is better for analyzing short-dated options contract.

1. INTRODUCTION

The past theoretical and empirical research largely dealt on modeling the finan-
cial markets’ volatility. According to Bauwens et al.[2], the risk associated with
stock returns is commonly measured using volatility. Furthermore, volatility is
paramount to managers of Portfolio, option traders and it is useful in risk man-
agement, pricing of derivatives, etc. The GARCH model and its extensions are the
most frequent and widely used approach to model volatility. The model consid-
ers the clustering of volatility and excess kurtosis of the financial data. According
to the available empirical evidence, financial market volatility is characterized by
persistence, which standard GARCH models are unable to fully address. Dieobold
[] and Lamoureux [L3] believe that structural changes in the variance process are
to blame for the significant persistence in conditional volatility in these models.
Furthermore, because GARCH models do not account for structural changes in the
variance process, models that enable the parameters to change over time may be
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more appropriate for volatility modeling. In this regard, literature has offered mod-
els for capturing structural changes in the volatility process. Schwert [I7], for in-
stance, considers a model in which returns’ volatility is either high or low and allows
parameters to shift between these two regimes in accordance with a Markov process
with two states. To capture abrupt volatility fluctuations, Cai[3] constructed an
ARCH model with parameters that switch regimes and later Gray [7] documented
a Markov-switching GARCH model whose modification was proposed by Klaassen
[12]. Bauwens et al.[2] created a regime-switching GARCH model that better de-
scribes the volatility behavior. This model provides for distinct parameters in each
regime to account for the possibility that the data generation process undergoes
a finite number of changes within the sample period. This model, according to
Bauwens et al.[2], permits varied reversion speeds to different volatility levels at
different intervals throughout the sample period. In terms of the regime-switching
model, Liu et al.[T4] used it to analyze option pricing. They looked at using a
fast Fourier transform (FFT) approach to value options, in which the asset price is
driven by a regime switching geometric Brownian motion. Hardy [I1] developed a
regime-switching model of long-term stock returns which she used to price the Eu-
ropean options. Later on, Mitsui and Satoyoshi [16] applied the Markov switching
GARCH model to price the Nikkei 225 options, assuming risk-neutral investors.
Godin and Trottier [6] developed a regime switching framework with extended
Girsanov principle to price options. In terms of pricing options, there is limited
evidence that regime-switching and regime-switching GARCH models outperform
the classic Black-Scholes model. As a result, the goal of this study is to develop a
regime-switching model for European option valuation using the risk-neutral mar-
ket assumption. The regime switching model is modified to include GARCH effects
and dynamics resulting to regime-switching GARCH model, hereafter referred to
as RS-GARCH. These two models are utilized to fit financial market data and the
results compared with those from the famous Black-Scholes model.

The remaining part of this paper is arranged as follows: section 2 describes the
methods used, including the derivation and estimation of the RS and RS-GARCH
models. Section 3 deals with empirical data analysis and model implementation,
while section 4 brings the paper to a close.

2. METHODOLOGY

2.1. Regime-switching model. A asset with no risk and a risky one tradable for
a set period of time, [t, T] are considered. Assume that {a(t),¢ > 0} is a continuous
Markov process under the probability space (Q,F,P) with M = {1,2,...,k} as
the state space where P is the physical probability measure. In a regime switching
market, let the price of stock, St, at time t satisfy the equation

dSy = ,ufa(t)Stdt + Ua(t)stthv a(t) = {17 2., k}a (21)

such that the initial price, S; is greater than zero, and the standard Brownian
motion, W; and «(t) are independent. The solution of equation (2.1)) is determined
through It6 lemma as
St 1,
]n(?t) = (Ma(t) — §Ua(t))7— + aa(t)WTa for O[(t) = {1,2, ...7k}7 (22)

where 7 = [T' — t]. The stock price undergoes discrete shifts between regimes a(t)
and it is described by a Markov chain of order 1 and whose transition probability
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P;; from state i at time ¢ 4 1 to state j at time ¢ denoted by P;; = P{a(t +1) =
jlat) =i} for alli,j = {1,2,...,k}. P satisfies the conditions 0 < P;; < 1 and
Zle P;; = 1. The matrix of transition FP;; of the Markov chain is given by

P11 P12 .- DPik

P21 P22 ... P2k
Pij =

DPr1 . o Dkk

An equivalent measure Q is constructed from the risk neutral measure, in which
the discounted stock price is a martingale. Equation (2.1)) can thus be written as

1
In(St/S) = (r — iai(t))T +oapyWr, for a(t) ={1,2,...,k}. (2.3)

Let R denote the total time spent in regime «(t) = jforj = 1,2,....,k in the
interval [¢,T] in n trials, given that at time ¢, the state is k. Denote the probability
Pr(R =aj;) by p for j=1,2,..,k—1. For simplicity, we restrict ourselves to
two regimes, i.e, k = 2, hence the transition matrix discussed earlier reduces to

Py — {pn p12] '
P21 P22

As the number of transitions n grows larger, the fraction of time spent in each
regime by the Markov chain can be calculated using a time-average(invariant) dis-
tribution of the Markov chain, that is, P = /3, where P is the transition matrix
and B is the average fraction of time spent in state a(t) = j over n steps as n
approaches infinity. Let S =[5 B2 ], then

[BP] = (1 B2 Bi ﬁlz] = [B1 Ba]. (2.4)

This results into two equations as follows; 31 Pi1+82P21 = BlandBy Pio+ 82 Pos = Pa
both of which Slmphfy to 51P12 = nggl( since P11 + P12 =1 and P21 + P22 =1 )
Again, since 8 is a valid probability distribution, 81 + 82 = 1 and solving we get

(2.5)

Since, 7 = T — t is the trading period, the entire amount of time the process
spends in regimes 1 and 2 can now be computed as R = (17 and 7 — R =
T — 17, respectively. In view of the research by Duan et al.[I1] and Hardy[II] the
distribution of log returns, X; = log St —log Sy, conditional on the total time spent
in regime «(t) = j, forj = 1,2, k can be developed such that there exist a normal
density function whose mean and variance are p* , 0*? , respectively. That is,

Xi R ~ N(,LL*,CT*Q), (2.6)
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T—R
T

T—R
T

where p* = Zpy + (=R )y and 0x* = Rof + (7= )03. Since p is the probability

function for R,

k—1
Fx, =Pr(X,<az] =) Pr[X;|R=aq,]p
j=1
S (2.7)
= ;%( - )P,

where ¢() is the standard normal probability distribution function. This implies
that the probability density function for X; is

k—1
fx.=)_0 (), (2.8)
j=1

o *

where ¢() is the standard normal density function.

Now, define C(K,T), the European call option(under regime switching world)
with strike price K that matures after time 7', and is valued at S; at an initial
time t. Since in a regime switching market, the parameter o2 switches regimes,
we can define a parameter o*2 conditional on knowing R , the total time spent
in regime a(t) = j for j = 1,2 . This implies that, the asset price S;|R has a
log-normal distribution with parameters that depend on R, that is, the parameters
are u* and ox2 as defined earlier. Now, to derive a regime switching pricing model,
the Black-Scholes formula is considered, and the parameter o is replaced with o2
to give the desired model as follows;

C(K,T) = E®[maz(X7 — K)|R] = Si¢(d1) — e ""K¢(dz) where (2.9)
ln(%) + 77+ 1[Ro? + (1 — R)o3]
dy = and
VRS + ( — R)3

dy = dy — \/Ro} + (1~ R)o3.

2.1.1. Regime switching model parameter estimation. According to Hamilton[g],
the regime of a given process at time t is denoted by a random variable «(t)
such that a(t) = 1,2,...,k where k is the maximum possible number of regimes.
When the process X; is in regime a(t) = j for j = 1,2, ..., k, then it is presumed
to have originated from a normal distribution with mean, p; and variance, 012» .
Therefore, the density function of X; conditional on «(t) taking on the value j is

given by

ot = 5:0) = e { - T} (2.10)

where 0 = {u;,0; } for j = {1,2,...,k}. The probability distribution presumed to
have generated the unobserved regime «(t) for which the unconditional probability
that a(t) = j is denoted by =, , that is,

Pla(t) = j|F; 0} =m; forj ={1,2,...k}. (2.11)
This implies that the vector # now becomes 6 = {;,0,,7,;} . The probability of
the joint event that «(¢) = j and X, falls within some time interval [t,T]. This is
determined by integrating

p(Xe,a(t) = j;0) = f(Xila(t) = j;0) P(a(t) = j|F; 0) (2.12)
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over all values of X; between t and T. The expression (2.12)) is the joint density
function of «(t) and X; and utilizing equations (2.10) and (2.11)), results to

2
. 5 (Xe — j) .
Xy, a(t) = j;0) = —9— ex {—7}for — (1,2, k). (213
Note that summing equation (2.13)) over all values for j gives

k
F(Xe;0) = Zp(xt,a(w = j; 0)

2 2
. m (X ) j (X )
= \/%01 exp{ 20% } + ... + maj exp{ 72%2 }

(2.14)

Because the regime «(t) is unobserved, equation (2.14]) best reflects the actually
observed data X; . The log likelihood for the observed data can be derived from
Equation (2.14) if the regime variable «(¢) is i.i.d across multiple dates, ¢, as

T
L(0) = log f(Xy;0). (2.15)

The maximum likelihood of 6 is determined by maximizing Equation (2.15)) while
keeping the constrains m; + mo+,...,+m; =1 and m; > 0 for j =1,2,....,k. It is
shown in Hamilton [§] that the parameters y1;, o5 and 7; can be estimated as

T . n
X,P — X,
~j:2t:T1 tPla(l) ;7| 0} forj =1,2,.... k. (2.16)
> i1 Pla(t) = j| X 0}

o _ 2 (Xe — py)*Plalt) = jI X+ 6}

o2 - = forj=1,2,.... k. (2.17)
’ Yoy Plat) = j| X6
T ~
7 =T Pla(t) =j|Xy; 0} forj=1,2,...k (2.18)
t=1

Furthermore, if we restrict the transition probability only by the conditions P;; >
0 and (Pj; + P2+, ..., +Pix) =1 for all ¢ and j, then Hamilton [9] documented the
MLESs of the transition probability as

_ Y Plat) = jat—1) = j|X.;6)
S, Plat — 1) = i|X,; 0}
This implies that the predicted P;; is simply the number of times state i appears

to have been followed by state j divided by the number of times the process was in
state i.

P, forj=1,2,..., k. (2.19)

2.2. Regime switching-GARCH model. Let S; be asset price at time ¢ in a
discrete-time economy. The one period asset returns under the physical measure P
is defined as

Xt =1In St —1In St—l

(2.20)
= Ut +T¢, T = OtEy,
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where e, ~ N(0,1). The general GARCH model is defined as

P q
Ty = O4r, OF =w+ Z ir?; + Z 5jat2_j, (2.21)
i=t j=1
where q is the GARCH degree; p is the ARCH process degree, ¢; is a set of zero-
mean and unit-variance random variables that are distributed independently and
identically. It is required that w > 0, a; > 0, 8; > 0 and Zle a; + 23:1 B; < 1.
It is argued by Bauwens [2] that estimation of this model using daily or higher
frequency data implies that the volatility persistence is very high and the model
may not be covariance-stationary. This persistence could be due to changes in
the GARCH parameters over time, see Mikosch and Starica, Catalin [15], etc. To
capture this regime swings, a Regime-Switching GARCH model is considered since
it allows the parameters to shift regime. Define an unobserved state variable at
time ¢t as S; € {1,2,..,k} which selects the model parameters with probability
P,; = Pla(t) = j|Fi—1] where F;_1 is the available information at time ¢. The
RS-GARCH model can thus be defined as
Xt = pa) +1¢, wherer; = 0y o)er wheree ~ N(0,1),

u ) I ) (2.22)
Ota(t) = Wa(t) + Zai’a(t)rt_i + Zﬁkat_j for a(t) ={1,2,...,k}.

i=t =1

Let ¢(St ) be the payoff of a European call option maturing at a future time T
and whose exercise price is K , where ¢(S7) is a random variable under probability
measure space (Q, F,P) describing the market. Then, under the RS-GARCH(p,q)
specification, the today’s price of the call option C; under measure Q is given by

C, = e~ (T-0rEQ [max(ST _K, 0)|ft}
(2.23)
= "R (57 - K)*|F].

For simplicity we restrict the model to RS-GARCH(1,1).

2.2.1. RS-GARCH model parameter estimation. The RS-GARCH model estima-
tion is determined via the maximum likelihood estimation technique as reported
by Ardia et al.[I]. The model is conditioned on normal distribution. Let 6 =
(w0, ks @1k, Bi)’ be the vector representing parameters of the model, then the like-
lihood function is given by

L(0|Fr) = Hf 7400, Foo1). (2.24)

Here, f(ri|0, F¢i—1 ) is the probability density function of r; given the previous
observations, F; 1 and the model parameters . The conditional density of r; , for
RS-GARCH model is thus given by

f(rel0, Fe1) ZZ jzit—1fp(ria(t) = 4,0, Fi1) (2.25)

=1 j=1
such that 2z, ;-1 = Pla(t — 1) = j|0,F;—1] is the state i filtered probability at
time ¢ — 1 computed via Hamilton filter, see Hamilton and Susmel[I0]. In equation
(2.25)), the density of r; in state a(t) = k given # and F;_; is expressed as
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fo(rea(t) = k,0, F;—1) . The maximum likelihood estimate 6 is thus determined
by maximizing equation (2.24]).

2.3. Root Mean Square Error (RMSE). The Root Mean Square Error (RMSE)
is determined using both the model’s projected and observed option prices to com-
pare the models in terms of option price prediction. In other words, the RMSE
of a prediction model in relation to observed option prices is calculated using the
square root of the mean squared error,

RMSE = \/2”_1(1;—0)2 (2.26)

where P; is the predicted option prices, O; the observed option prices and n is
the sample size. Note that, lower values of the RMSE are an indication of a model
with a better prediction.

3. RESULTS AND DISCUSSION

3.1. Empirical data. The data utilized here for analysis is the daily closing price
as reported in the Russell 2000 (RUT), Facebook (FB) and google(GooG) indices
for the period January 2, 2013 to January 21, 2022. The indices returns, X; , are
computed as in equation (2.20). The options data utilized from the three markets
is in two sets; that is, call options prices expiring in 25 and 258 days.

3.2. Descriptive statistics. The plots of the stock returns and stock prices of
Russell 2000, Facebook and Google series are presented in Figure The three
return indices shows the common properties of financial data, however the Face-
book and Google indices returns have pronounced volatility clustering compared
to the Russell 2000 index returns as displayed by long spikes. Table [I] presents
the descriptive statistics for the three indices returns. The Russell 2000, Facebook
and Google indices have a daily mean return of 0.0361%, 0.1045% and 0.0867%,
respectively.

TABLE 1. Basic statistics for indices returns

Index Obs Mean Var Std dev. Skew Ex.Kurt JB

RUT 2280 0.000361 0.000184 0.013571 -1.238128 13.110355 25291.3***
FB 2280 0.001045 0.000450 0.021220 0.403136 14.683610 29830.3***
GooG 2280 0.000867 0.000255 0.015979 0.419047  6.844511  9294.8***

The daily standard deviations are 1.3571%, 2.122% and 1.5979% respectively for
the Russell 2000, Facebook and Google indices. Moreover, Russell 2000 reports a
negative skewness of -1.238128 while Facebook and Google have a positive skewness
of 0.403136 and 0.419047 respectively. The excess kurtosis is positive and higher
than three for all the return series. These values imply that the returns are not
distributed normally, that is, it has fat tails which is also confirmed by the Jarque-
Bera(JB) statistic. The results are in tandem with properties of other financial
returns.
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3.3. Empirical findings and discussion. The parameter estimates of the RS
model are estimated according to equation and reported in Table The
parameters are different across the volatility regimes. For instance, the mean in low
volatility regime are 0.0008, 0.0015 and 0.0013 for the Russell 2000, Facebook and
Google indices returns respectively, which is higher than the corresponding mean
in the higher volatility regime. In addition, in high volatility regimes, the mean are
negative implying low returns and considerable risk in this regime. Moreover, the
probability of switching regimes is low, that is, once the volatility process is in one
regime it lingers before transiting to the next regime. The probability of transiting
from low to high volatility regime is estimated at 0.0773, 0.2277 and 0.1931 for
Russell 2000, Facebook and Google indices respectively.

Stock prices Stock returns

— Russell 0
o o — Facsbook p
— Google
5 - 5 o |
2 2 8]
£ £
— Russel
- | ] Facebook
2 | — Google
o
[
0 500 1000 1500 2000 0 500 1000 1500 2000
Year Year

FI1GURE 1. Stock prices and stock returns

This implies that once the process is in low volatility regime, it stays there for
approximately 12, 4 and 5 days for Russell 2000, Facebook and Google indices re-
spectively. However, under a high volatility regime, the process lasts longer than in
a low volatility regime approximated at 79, 19 and 24 days for Russell 2000, Face-
book and Google indices respectively. The RS-GARCH parameters are estimated

TABLE 2. Regime-switching model parameter estimates

Index /Jl [Z2 071 072 Plg P21
RUT 0.0008 —0.0002 0.0094 0.0273 0.0773 0.0126
FB  0.0015 —0.0009 0.0141 0.0394 0.2277 0.0515

GooG 0.0013 —0.0010 0.0105 0.0306 0.1931 0.0408

by utilizing equation and reported in Table Almost all the parameter
estimates are significant at 5% significance level. These parameter estimates show
that the volatility process is varied across regimes. Each volatility regime has dif-
ferent unconditional variances, which confirms the existence of different volatility
regimes. The conditional mean estimates in high volatility regime, w; for ¢ = 1,2
are greater than the corresponding estimates in the low volatility regime across the
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three markets. Moreover, the volatility dynamics are implied by the ARCH term
a1; and GARCH term §; for i =1,2. A large value of 5; indicates that the shock
effects to future volatility take long to die off, that is, volatility is highly persistent
whereas large values of «y; display volatility reaction to the recent changes in price.
A comparison of the two regimes shows that the low volatility regime has low val-
ues of the ARCH term but have high GARCH term. This means that the GARCH
process is more reactive and less persistent in the low volatility regime than in
high volatility regime. The persistence of volatility in each regime is calculated as
aq;+6; for i = 1,2 and it is required that ay;4+8; < 1 for covariance stationarity of
the process. The calculated values for Russell 2000, Facebook and Google indices
are; a1 + f1 = 0.9633 versus ais + P2 = 0.9764, a1 + f1 = 0.9855 versus
aye + B2 = 0.2641 and aq; + B1 = 1.0986 versus aio + B2 = 0.1789 | respectively.
It can be inferred that the low volatility regime for the Facebook and Google has
high volatility persistence than the high volatility regime despite the process being
explosive in the low volatility regime in the Google index. The volatility persis-
tence is slightly higher in the high volatility regime than in low volatility regime for
Russell 2000 index. The estimated option prices for some given strike prices from

TABLE 3. RS-GARCH model parameter estimates

Index w1 wo o1 12 B1 B2 Pis Py

RUT 7.4x10~7 3.6e-5 0.0683 0.3086 0.8950 0.6678 0.3527 0.8414
FB 1.0x10~7 0.0045 0.0370 0.2639 0.9485 0.0002 0.0319 0.6405

GooG 2.2x107% 0.0010 0.1401 0.1785 0.9585 0.0004 0.0398 0.3072

the Russell 2000, Facebook and Google indices are computed based on equations
and and presented in Table [4l The strike prices considered are for 25
and 258 days for the Russell 2000, Facebook and Google markets and the initial
stock prices are 1987.92, 303.17 and 2601.84 respectively. It is assumed that the
markets are without risk and an interest rate of 6% per annum is utilized. The
computed call option prices are significantly different from the results reported by
the Black-Scholes model and also the three models reports values that are slightly
different from the actual market price values, however the price values from the
Black-Scholes model seems to report prices that are close to the expected market
prices as compared to the RS and RS-GARCH models. A comparison of the models
is done by employing the Root Mean Square Error(RMSE) test and the results are
presented in Table The results portray RS-GARCH model as a better model
than the Black-Scholes and RS model in estimating the 258 days option prices for
Facebook and Google indices. On the other hand, for the 25 days option prices
estimation the Black-Scholes model gives better estimates followed by RS-GARCH
and RS models in that order.

Moreover, Figure 2| and [3| presents the plot of strike prices versus the estimated
call options and the observed market option prices. Clearly, RS-GARCH model is
revealed to give better estimates compared to the other models for the Facebook
and Google stock market indices.
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TABLE 4. The Call Option prices

RUSSELL FACEBOOK GOOGLE
B-S RS RSG B-S RS RSG B-S RS RSG
Strike Mkt  Call Call Call | Strike Mkt Call Call Call | Strike Mkt Call Call Call

25 days call option prices
1960  94.2  75.36 121.47 106.22 | 200  103.83 104.36 104.50 104.36 | 1600 1005.35  1011.34 1011.35 1011.34
1965 912 72.40 118.82 103.50 | 260  47.55 45.57 49.95  30.79 | 1825 781.55 787.67  788.17  T87T.67
2000 714 53.70 101.37 85.74 | 280  31.55 28.50 35.65 21.39 | 2300 336.9 319.83  348.68  318.38
2050 4735 33.12 79.71 64.23 | 285 27.85 24.78 32.52  31.34 | 2340 303.55 282.90 31749  280.83
258 days call option prices
1450  579.5 630.44  680.66  656.89 | 100  205.53 209.13 209.90 209.13 | 720 1892.15  1924.74 1924.98 1924.74
1500 537.5 586.32  645.00  618.56 | 105  200.85 204.43 205.42 204.42 | 740 1872.55  1905.93 1906.23 1905.93
1550 496 543.18  610.60  581.54 | 110  195.98 199.74 200.97 199.72 | 760 2045.55  1887.12 1887.49 1887.12
1950 214.5 254.11 38218  337.00 | 115  186.40 195.04 196.57 195.02 | 780 2200.00  1868.31 1868.77 1868.31

TABLE 5. Root Mean Square Error (RMSE)

25 days options 258 days options
Index BS RS RSG BS RS RSG
RUT 5.159 21.48 11.65 29.78 160.0 1154
FB  1.685 4.175 2.939 4.081 24.55 3.433
GooG 14.07 29.96 17.59 286.0 305.6 285.3

4. CONCLUSION

This paper focuses on developing a model with regime switch as well as extend-
ing it to incorporate GARCH in the regimes with the key purpose of pricing the
FEuropean options. These models are utilized in pricing European options derived
from the Russell 2000, Facebook and Google market indices. Two sets of data are
utilized in fitting the model, that is, 25 and 258 days call option prices. The model
comparison is carried out by computing the Root Mean Square Error (RMSE) for
each model and the model with the least RMSE is the best model for pricing the
FEuropean call options.

The results indicate that the financial time series for the three markets exhibit
the common features of financial data such as volatility clustering, heavy tails
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among others. The parameter estimates of the models indicate that the market
indices have distinct regimes. In this case two regimes are used, high and low
volatility. It is clear that the low volatility regime has high volatility persistence
for Facebook and Google data whereas the volatility process is explosive in low
volatility regime for Google market index. The results show that RS-GARCH
is the best model compared with Black-Scholes and RS models when applied to
long-dated options contract. However, when short-dated options contract are used,
Black-Scholes model out performs the RS and RS-GARCH models. Lastly, there
is need for more empirical analysis to be carried out by other researchers so as to
support our findings.
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