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WASC STOCHASTIC VOLATILITY JUMP

TSILAVINA RAVO HASINA ANDRIANANTENAINARINORO
TOUSSAINT JOSEPH RABEHERIMANANA

ABSTRACT. In this article, we develop a model which estimate the value of a
basket of the underlying assets. The aim of this paper is to obtain a new form
of a model, the stylized facts of WASC model and consider the risk created by
the turbulence effect on the market which causes by the abrupt and sudden
movements in underlying prices. In this case, we transform WASC and change
the O.U-type process used in the WASC model into a Levy process in R"™ with
jumps below. Our task is then to find the conditions on the parameters of the
model by regularizing the volatility in a way so that it remains positive definite
even if it jumps, capturing the stylized facts of WASC model and obtaining
the closed form expression of the characteristic functions of the model.

1. INTRODUCTION

Famous on the stylized facts, WASC is a reference for a multidimensional model

to evaluate the value of a basket of the underlying assets. Moreover, Multivariate
Stochastic Volatility Models of O.U type gives account of the risk created by the
turbulence effect on the market which is not captured by WASC. Indeed, The recent
perturbations in the financial market induce unexpected and unpredictable events
on the assets prices (rare occurrences) which are difficult to capture by a continuous
model or WASC because the value of volatility of I'; expected is mostly big (there
is an anomaly). So, we want elaborate a new multidimensional model which gives
account all the risk created by the perturbation on the market and the stylized
facts of the WASC model at the same time.
To explain this risk created by the turbulence effect on the market, we introduce
a jumps process ¥ in the model dynamic of volatility. To do this, we change the
0O.U-type process in R™ used in the WASC model dz; = ®x¢dt + QdW,; into a Levy
process in R™

dl’t = (I)l’tdt “+ v/ Q/Qth + dpt (11)
where

e & and ) are n x n dimensional real matrices
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e W, is a n-dimensional stochastic vector whose components are standard
Brownian motions and
e P, is a n-dimensional vector of compound Poisson process.

Thus, we obtain the differential diy; above by deriving the volatility of the form :
Zp = in,t(xi,t)l (1.2)
i=1

where v is a positive integer nonzero and (z;:): ¢ = 1, ...,v are the n dimensional
vector of process defined by (1.1).

How to transmit the jumps of the volatility towards the yield? The Multivariate
Stochastic Volatility Models of O.U type inspires us to introduce the parameter ¢
by producing with the jumps process of the volatility 1; and we obtain a model of
the form:

tr(let)
dlogS; = | n+ : dt + TidZ; + dipr
tr(D,TI)
dly = (vQ'Q + Ty + I, @) dt + VT dWi/Q'Q + VQ'Q(AW,)' /T + diy
dZ, = /1= ppdB; + dW,p
dpy = VTdP; + (dBP) /Ty + (dP,)(dP,)

(1.3)
with
e v is a positive integer nonzero;
e o and p are vectors in R";
e () and ® are n x n dimensional real matrices;
e D; i=1,..n are n X n dimensional real matrices;
o dZy = /T — p/pdB; + dW,p defines the stochastic correlation noise between

the yield log Sy and its volatility I'; on the continuous part of the trajectory;

p= (plap27 "'7pn)/ where pi € [71 ) 1];

e B, is a n-dimensional vector whose components are Brownian motions;

o W, is a nxn dimensional stochastic matrix whose components are Brownian
motions;

e P, is a n x n dimensional stochastic matrix whose components are the
compounded Poisson processes;

e 7/ is the transpose of the vector y;

e H' is the transpose of the matrix H; tr(H) is the trace of the matrix H.

Our study is therefore to provide conditions on the parameters of the model so that
it can be used to estimate the price of a basket carrying several underlying assets
by accounting for the risk created by the turbulence effect on the market and the
risks treated by the WASC model.

In the later section, we try out to estimate the values of the indexes CAC40 and
SP500 using our model and we estimate the parameters of model by using the
C.GMM (Generalized Method of Moments based on the continuum of moment
conditions) method based on the historical data.

2. MODEL

In this section, we will see successively : details of the dynamics which lead to
this multidimensional model on the one hand; the characteristics specifying this on
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the other hand; and finally, we give the characteristic functions of the model to
estimate its parameters.

Let (R™ , P ) be a probability space where P is the "risk-neutral” probability such
that the price of any option is a conditional expectation of its future income.

Let us consider a market of a basket carrying n underlying assets.

Let S be the value of this basket at time t and log S; is its return.

2.1. Dynamic of volatility. Let (x;)¢>0 be a process in R™ defined by (1.1) and
(2¢)t>0 be a form of (1.2).

Proposition 2.1. z; is a positive definite matriz if and only if v > n > 1.

Proof. ”=" This is obvious for v = 1.

Let us now consider for v > 2.

Using absurd reasoning, suppose that n > v and z; is a positive definite matrix.
Let a n x v dimensional process be :

d(Xy) = ®(X,) dt + /Q'QdW; + (dP;), (2.1)
where
o (Xy) =(x14,...,2p¢) is a n X v dimensional stochastic matrix;
o W, = (Wi, Wa, ..., Wy t) is the n x v dimensional matrix where the W; ,
are the Brownian motion vectors of z; 4, i =1, ..., v;
° (Pt)’ = (Pit, Py, ..., Pot) is the n x v dimensional matrix where the P,
are n-dimensional vectors of compound Poisson process of z;;, i =1,...,v.
We have z; = (X;)'X:. So rank(z:) < min(n,v). And since v < n, then we have
rank(z) <n .
In addition, as z; is a n X n dimensional matrix, then z; is singular and therefore it
is not positive definite. A contradiction with z; is positive definite matrix.
?«<" Suppose that ¥ > n > 1 and we show that z; is positive definite matrix.
Let y € R, y = (y1,Y2,..,yp) . If we develop z; of the form (1.2) and assume
zig = (2%,...,2), we have

T
=3 | (€3)? - abat,
t— R . e :

B e N

So

n v n v n v
vy = Z YY1 Z x’lx; + Z YiYo Z I’Qx; NI Z YiYn Z x;x;
j=1 i=1 j=1 i=1 j=1 i=1
14 n ) ) 14 n ) ) v n ) )
= DD VB DD yawhT £ £ Y Y YiynTn

i=1 j=1 i=1 j=1 i=1 j=1

v n 174 n
_ 7\2 7.0
= E E (ijj) +§ E YrY1T X
i=1 j=1 i=1k,I=1
kel

v

n n
= Z (yjz5)% + Z YkYITT]

i=1 | j=1 k=1
k£l



4 T.R.H. ANDRIANANTENAINARINORO, T.J. RABEHERIMANANA

2

= 2| 2w
i=1 \j=1
> 0.

Thus, if the latter is zero, we obtain v equations with n unknowns, which are :

NE!

(yjz}) =0

<
[
—

M=

(yjz3) =0

J

Il
N

n

2 () = 0.

Jj=1

Since v > n, then the unknown y; = 0 for all j.
Thus, the later is strictly positive for all 0 # y € R™ and it follows that I'; is positive
definite matrix. O

Let X = (X¢)¢>0 be a Levy process. We define the jump process associated with
X by

AX =(AX; ;t>0) (2.2)
with AX; = Xy — X;- where X;- = lim X,.
s—t—

Let X = (X¢)¢>0 be a Levy process defined by :
t t
X = Xo +/ K(s)ds +/ o(s)dWs + AX, (2.3)
0 0

with K and ¢ are real processes such that for all ¢ > 0; fot | K(s) | ds < 400

and fot | o(s) |? ds < +oo p.s; AX; defines the jumps process of X; and W, is a
Brownian motion. We define X the part of X; defined by :

t t
X; =X —|—/ K(s)ds —|—/ ©(8)dW; for all t > 0. (2.4)
0 0

The part X[ of X, is called the continuous part of X;.
Proposition 2.2. If v > n, then the process z; satisfies the SDE (Stochastic Dif-
ferential Equation) of type :
dz = (VQ'Q + Bzt + 2P )dt + /2 (AW2)' /Q'Q + /Q'QAWe /2 + /2 (AP,
+ dP;\/Z; + dP,(dP;)’ (2.5)
with Wy is a nxn dimensional stochastic matrix whose components are independent

Brownian motions; Q and © are the above matrices ; (P;) is a n X n dimensional
stochastic matriz whose components are the compounded Poisson processes.

Proof. Let us dP;; = Y;dN; where the Y; are n-dimensional vectors of i.i.d (inde-
pendent and identically distributed) random variables and N; is a Poisson process of

v
intensity A > 0. Applying Ito’s formula on the Levy process f(x) = > x;¢(xit)’,
i=1
we obtain

14 14 1 14
dzy = Z drg(xf,) + Z zi ¢ (daf ) + 3 % 2 Z < dxfy, (dxfy) >
i=1 i=1

i=1
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v

+ Z(Zzt +Yi) (zis + Yz‘)l — sz‘,t(IEz‘,t)l dN
i=1

= > (Pwigdt +/QQAW; ) (win) + Y wi s (P pdt + /Q' QAW )’
1=1

=1
+ Y NVQQAW, (Wi ) VQ'Q + [mip(wie) + wia(Vy) + Yilwi)
=1

+Y;(Y:) — Tt (xi,t)/]dNt
= (WQ'Q+ Pz + %P )dt + Z VQ'QAW, 4 (254) + i1 (AW 1)V Q'Q
i=1
+ 3 (@i (V) + Yi(wie) + Yi(Y3)]dN,
i=1

= (WQ'Q+ Bz + 2 ®)dt + /Q' QAW X, + (X)) (dW,)' vV Q'Q + (X1) dP;

+(dP,) X; + (dP,) dP;. (2.6)

Since z; is a positive definite matrix through the Proposition 2.1, then let us as-
sume dP;, = (dP,)'X,(\/z)"" and dW; = dW;X,(,/z)~'. We have dP,(dP;)" =
(dP)' X¢(2) " (X,)'dP; = (dP;)'dP;, because X;(z;)~ Y (X;) = I, where I, is the
v X v dimensional identity matrix. Indeed, let us look for a v x v dimensional real
matrix y such that y = X;(2) 71 (Xy) .

We have (X;)'y = I,(X:) = (X¢)". Hence y = I,

So, (2.6) = (vQ'Q+ Dz + 2, D')dt + \/Wth\/z_tJr V(AW VQ'Q + \/Z(dPy) +
dP;\/z + dP,(dP;)’. O

In the following sections, the stochastic volatility of the model I'; is a solution
of the SDE defined by (2.5).

2.2. Dynamic of asset return and Correlation. The dynamic of asset return
represented in (1.3) is based on the model Gourrieroux and Suffana (see the ref-
erence [20]) by introducing the jumps process of volatility ;. Producing ; with
the vector p € R"™, the yield jumps according to its volatility. In this case, ¢ is the
frequency and the direction of the yield jumps.

On the continuous part, the stochastic process Z; defined in (1.3) is allow us to get
the asymmetric correlation between the yield and its volatility.

We will see later the conditions on the parameters to obtain these asymmetric
correlations.

3. CHARACTERISTIC FUNCTIONS OF THE MODEL

In this section, we try to give the explicit expressions of characteristic functions
yield and its volatility.
Let us recall the Feynmann-Kac argument following (see the reference [10]):
let X = (X¢)i>0 be a Levy process solution of the SDE :

dX, = b(X})dt + o(X,)dB; + G(X})dN, (3.1)
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where the functions b, 0 and G are measurable and N, is a Poisson process of
intensity A > 0. The solution of F(h, X;) = E{eftwh 9(Xo)dv £(X, )/ Xy} for all
t,h > 0 where f, g € C? is determined by LF (h, X;) = g(X;)F(h, X;) with L is the
operator of infinitesimal generator defined by:
OF (h, X}) 1 0%F(h, Xy) OF (h, X})
St Al VA —t X / X ) _ )

ox, > T3t |oEr ()55 on

+ )‘E’ {F(hﬂXt* + G(Xt*)) - F(hﬂXt*)/Xt} (32)

with the boundary condition F(h, X;ip) = f(Xetn).

LF(h, X;) =< b(Xy),

3.1. Characteristic function of asset returns. When there exist a no-arbitrage
opportunity in the market, the model checks:

dlog S; = (r1 — %vec[tr(eiif‘t)])dt + T dZ; + dipyp
dl'y = (vQ'Q + T, + I, @) dt + VT dWi/Q'Q + VQ'Q(dW,)' T + dify
dZ; = \T=p'pdB; + dWip
dipy = VTdP; + (dB) /Ty + (dP;)(dP,)
(3.3)
where
e 1 is a n-dimensional vector whose components are equal to 1;
e If ay,...,a, € R, we define vec(a;) = (ai, ..., a,)" which is a vector in R™;
e ¢;; is the n x n dimensional matrix defined by e;; = (;jx);k=1...n Where
f Y- { Lif (]ak) = (Zal)
Wk =1 0 otherwise ‘
Let us dP, = JdN; with J = (Jik)1<i,k<n where Jy are the i.i.d normal random
variables with Jix ~ N(m,0?).
Let v be a vector in R™. The characteristic function of log S;4, given log Sy and I’y
is defined by :

Ulog s, (7, h) = E{e(@y)/log Stth [10gS;, Ty} where t,h > 0 and ¢2 = —1. (3.4)

Using the Feynmann-Kac argument to the model and assuming g = 0 and f =
Viog 5,5, We have

a\II ogS,_ s h
lgT() = Elog S,F\Illog St* (’77 h) (35)

where ¢, h > 0; Liog 5,1 is the infinitesimal generator of the joint (log S¢, I'y) defined
by :
Proposition 3.1.

d + o’ d + o’
2 Ft— +Ft—

Liogsr = tr KuQ’Q + > D+ 2FtDQ’QD}
+Vy (ri - %vec[tr(eiif‘t)]) + %Vyftfvly
+tr(D\/Q'QpVyTy- + T- Vi p'\/Q'QD)

FAWiogs, % E{eCVCVITeHITD) 1 f10g8, T L with (3.6)

o D = (D;j)i<i,j<n Where D;j = BFLW and I'yj+, 1 < 4,5 < n are the compo-
nents of the volatility matrix T'y;
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I
o Vy = ain’ ceey 8%’) where Y; =log S;; is the yield of the i-th underlying
y-

in the basket, 1 =1,...,n.

Proof. Let t,h > 0. The operator Lo s,r can be broken down into the following 4
components :

Liog 5,7 %10g 5, = L(log 5)c Viog s, + L) Viog s, +L<(log 5)e,T)e> Viog 5, +Ljumps
(3.7)

with
® Lirye, Liogsye and Lo (iog 5)e,(r)e> are the infinitesimal generators which
are demonstrated by Da Fonseca (2007)(see the reference [12]) defined by :

.1 1

Log 5)c = Vy (7“1 - §vec[tr(eiif‘t)]) + EVnyVg/; (3.8)
Ly =tr[(vQ'Q + @Iy +T'-9')D + 2T~ DQ'QD]; (3.9)
L (1og 5)e,(Tye> = tr(D/Q'QpVy Ty + T Vi p'/Q'QD); (3.10)

® Ljumps is the infinitesimal generator of the jumps defined by :

Liumps = ME{¥(logSiin + H)— U(log Sitn)/logS, T}
— AWis, XE {ew"’ — 1/ZogSt,Ft} (3.11)

where H = 2{/T-Jo + JJ .
O
As the yield log S; is affine, then we have

\Illog s, (,y’ h) _ etT(A(h)Ft)+B(h) log St+C(h) (312)

with A(h), B(h) and C(h) are deterministic functions expressed by:

Proposition 3.2.

B(h) = (7)),

A(h) = Aga(h) Az (h),
o) = tr [rih(w)’—g(logAgg(h)—i—hT) n
M |:etr[w,ufl(%(mi)2+\/ﬁ(mi)+%o’2f‘tw)f% log,u] 1l

where 1 is a n X n dimensional matrix whose components are equal to 1 and

w = (1) + (¢’
p o= I, —cw;
v — (@ MAVRQ) +(2+ (MPVR'Q)
2 b
A11(h) Aw(h)| L T . -2Q'Q
{Am(h) AQQ(h)] = PN = X evey) Y

J=1
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Lemma 3.3. For any complex matriz Q = (w;;) such that the eigenvalues are
nonzero and ¥ € C”, we have

/ ot Qu A g ﬁneiﬂ/ﬂflﬁ—%tr(log Q) (3.13)

Proof. The left integral is equal to
eiﬁlelﬁ/ e~ (@=307 Q307 ) gy eiﬁ/gflﬁ/ e_y/dey, by imposing
y=a— %Qflﬂ. (3.14)

We know that the Gaussian integral is given by fRn e_y'ydy = /7" and thus if

n
. -3 aiy}
a = (a;) is a complex vector where the a; are non-zero, we have f]R,L e i=1 dy =
n

through the change of variable by doing the z; = /a;y;. Since any
ay...0n

complex matrix is split (see the definition in the reference [30]). Now, let be a
complex matrix = PDP~! where D = diag(d;) is the diagonal complex matrix
where the d; are non-zero and P its transition complex matrix. We have so

/e—y/dey — /e—y/Dydy

n

B T
N di...dy
— 3 logV/d;
= m™e i=1
_ ﬂ_nef%tr(logﬁ).
Hence 3.14 = 31?29 /rne—3tr(log Q) O
Proof of Proposition 3.2. Let t,h > 0. We have
OWiog s, (7,h) DA ) ac
los 5, - [tr( AT, )+ 25 jog 5, 4 29U gy g (y,h).
Then, from the expression (3.5), we have
OA(h) 0B(h) oC(h)
t r,- —2logS;- + ——=
T T

= B(h)((rl) — %vec[tr(eiiFﬁ)]) + %B(h)I‘B(h)’Jr

ir [(u@’@ I s )) A(h) + 20, AWQ'QA()

+tr[A(h) v Q' QpB(h)T'y- + T B(h)' p'V Q' QA(R)]

+AE [e(w)'(%/rt,.thrJJ’«p) —1/logSy, Ft} (3.15)

with the initial conditions A(0) = 0, B(0) = ¢’ and C(0) = 0.

Let us now E {e(W)’@‘/rt_’NJr”QP)/logSt, Ft}.

Letusy = (V1,5 )5 = (P15 s 00)"s VTt = (04, )1<i,j<n Which is symmetrical;
vee(Jk) = (Jik, -+ JInk)" and vec(ogt) = (1kty s Onkt)’
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n

So (¢v)'JJ'o= 3> () jkdpr = i svec(Ji) (0(sy) + (¢7)¢ Jvee(Jx) and

1j k=1 k=1
n n
(«7)' IVTp = (v dikomepr = 32 gvec(one) ((sy) + (<)@ )vec(Ji).
l,j,k=1 k=1
Let us alsow— o(sy) + (s7)¢’ and p = I,, — o?w.

As vec(Ji) ~ Np((ml),02L,) , we have
E {e(w)/(?\/ﬂ— J<P+JJ’<P)/lOgSt, Ft}

&=

3 (Lvee(Jy)) woee( i)+ 32 vee(o.e) woee(Ji)
{ek_l gvecln)ywmecl )t 2, veelan) wvecl i /logSt,Ft}

I
=

E {e%“ec(‘]’“)/‘””ec(‘]’“H'“ec("’“vt)/‘””ec(‘]")/log,S't7 Ft} because Jy, 1.i.d

=
Il

1

I
=

o3 (mD) wiml)+(vec(on,t)) w(m) g {e%g'a%&[(mi)'w+((7jec(ak,,,))’M)]g/logst’ Ft}

=
Il

1

1 1
where ¢ is a Gaussian random variable in R"™ of density ——— exp(—§€’ €)

V2t

n —%e’;¢e+[(m1)/wa+(vec(ak))’wa]a

_ T A w(mD)+(wee(or,) wlmi) / € de (3.16)
= e2 " 3 .
k[[l " V2T

where € = (g1, ...,e,)" € R" and de = de;...de,,.
As || 0w ||< 1, so using the Lemma 3.3, we have

3 16 H 2 (m1) w(ml)+(vec(oy)) w(ml)—1trlogp
k=1
(%(ml)'wa—i—%(vec(ak))'wa) (2u71)(%aw(mi)+%awvec(ak))' (317)

After some computations, we have
(vec(og)) w(ml) + vec(on) wop™tow(ml) = vec(op) wu=t (m1).
Thus

n
(317) — H 62(ml) "wp~t(mi)+vec(or)’ wufl(m1)+ vec(oy) wop lawvec(ak)——trlogu

L(mi) wp=t(mi)+vec(ow)’ wufl(m1)+ vec(op) wopLowvec(oy)—Ltrlogp
2 2

_ etr[wpfl(%(mi)2+\/Ft(mi)+%o’2Ftw)]7%trlogu
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So
1
(3.15) = B(h) ((7“1) - —Uec[tr(emf‘t )]) + §B(h)I‘B(h)/+
/ ¢ @I
KVQ 0+ 2%y Lp, 2 ) A(h) + 2FtA(h)Q’QA(h)]
+r [A(h) \/Q’ QpB(NT - + Ty B(h)' o' /Q'QA(R)]
+>\ [etT[wﬂfl(%(m ) +\/ﬁ(mi)+%g2Ftw)]fgtrlogu _ 1:| .
By identifying the coefficient of log S;-, we have aggl}z) = 0 which follows that
B(h) = B(0) = (s7y)’ for all h > 0.
Identifying the coefficient of I';-, we have
0A(h) 1L 1 O+ 9 o+ 9
—5 = gy (sment 2(<’Y)(§’y) 5—A(h) + Ah) +2A(h)

i=1

Q'QA(h) + A(h)\/Q'Qp(sv) + (c7)p'VQ'QA(h)
= gt g+ (TE 0 VR) A0+

B <‘I’+ Y TG )+2A(h>Q’QA<h>

= 3 e + 5(60)(6) + TAR) + AR)T +24(H)QQA(M)

—_

l\D

E

3

—_

2 4
=1
(3.18)
in the trace operator where T = (@+(s7)e'y Q/Q)Z@HW)‘), V)"
Let us
A(h) = F(h)"'G(h) with F(h) € GL,(R) and G(h) € M, (R). (3.19)

We have 0 = A(0) = F(0)~*G(0). In this case, we take G(0) = 0 and F(0) = I,,.
Well, we have B[F(g)hA(h)] = 220 A(h) + F(h)24%) | Then, we have
OG(h) OF(h) GA( )
oh oh

A(h) =
= ( Z '§% €ii + )(';7)/) + G(h)T
(h) +

(h)TA h)(2Q'Q)A(h),

through (3.18) and (3.19).

l\’)lr—t

Thus

n

{ 2Gh) = G(h)Y + F(h) (% > (svi)eis + %(w)(w)’)

i=1

o8P — —2G(h)Q'Q — F(h)Y.
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So
o[G(h) F(h)] . ! e
— [G(h) ()] {—% ;(cm)eu 1CRALC) M S
Then
8 -2Q'Q
[G(h‘) F(h)] = [ eXp (h |:% i g’)’z eii + (§7)(§7)/ -T
- -2Q'Q
Aqi(h)  Aa(h n
Let us |:A21(h) A22 =exp | h [ % 21 §’)/z €ii + (gf}/)( ) =T
We have G(h) = G(0 A11 21(}5 and F'(h) = G(0)A12(h) + F(0)Azz(h).
As A(h) = F(h)~ G( ), we get

A(h) = (G(0)A12(R) + F(0)Azz(h)) " (G(0)A11(h) + F(0) Az (h))

Using the initial conditions G(0) = 0 and F(0) = I,,, we have

A(h) = (Azz(h)) "t Ag1 (h). (3.20)
And finally, by identification
P~ iy + Q@AM+

A [etr[wu*l(%(mi)2+\/r_t(mi)+%g2n,w)—% logu] _ 1} (3.21)

As 8F(h) = —2G(h)Q'Q — F(h)Y, we have G(h) = —3 [aggl) + F(h)T} QQ)
Thus

trvQ'QA(h) = tr(vQ'QF(h)™'G(h))

= tr [_—VF(h)_laF—(h) - gr] .

2 oh
Then
¥ - 4, O0F(h) v
21) = W+ EZpmp 12 Py
(21 tr[(r)”+ 2 P T 3 ]+
A [et’“[”#”(%<mi>2+¢ﬁ<mi>+éo2m)f% log ] _ 1} :
And thus
Ch) = tr [(ri)h’y' + - (log F(h) — log F(0)) - V_hT}

+>\h |:et’l“[wlu‘*1(%(mi)2+\/ﬁ(mi)+%g—21“tw)7§ log,u] _ 1:|

= tr [(ri)h’y' — g (log Az (h) + hT)} +

b [etr[w;L*l(%(m1)2+\/r_t(mi)+%g2r,,w)—% log;t] _ 1} )
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3.2. Characteristic function of Volatility. Let I'; be a solution of the SDE
(2.5) with ¥ > n and A be a n X n dimensional matrix. The characteristic function
of I'y4p, given I'y is defined by :

Ur,(Ah) =E {et’“<<<A>Ft+h> /Ft} where ¢, 1 > 0. (3.22)
Since I'; is an affine function then
Ur (A, h) = et (BT Teh) (3.23)
with B(h) and c(h) are deterministic functions expressed by :
Proposition 3.4.
B(h) = ((sA)Bia(h) + B2z(h)) ' ((sA)Bi1(h) + Ba1(h)), (3.24)
oh) = tr {—g <log((§A)Blg(h) + Boo(h) + 12 - @/)] A

h - .
)\/letr[B(u)(I,ﬁzﬁB(u))*l((m1)2+2,/Ft,(m1)+2rt,3(u)02)fg1ogA(u)]du
0

(3.25)

with 1 is a n x n dimensional matriz whose components are equal to 1, Au) =
I, — 202 B(u) and

Bii(h) Bia(h)| e+’ 90/
{Bllh) Bli(h)} - P <h[ 0 —ae| | (3.26)
Proof. Let be t,h > 0.

By using the Feynmann-Kac argument on the SDE of I'y and imposing g = 0 and
f=9Yr,, we get

OUr, (A, h)

8h = Er‘l’rti (A, h), with (327)

d + @’ o+ @’
Lr = t7"|:<VQ/Q+ J; Ty 4T, o

1A\ E {etr(B(h)(z,/Ft,JJrJJ’) _ l/Ft}

> D +2T,-DQ'QD

where D = (D;;);; and D;; = % We have also

oh oh
So, from the expression (3.27), we have

i (2200, ) , 2

D+ P o+ @’
Ty + T4

—tr KVQQ’ + ) B(h) + 2T, B(h)Q'QB(h)
AR { et B VT T 0] (3.28)

with the initial conditions B(0) = ¢A and ¢(0) = 0.
Let’s first determine E {etr[B(h)(Q Ff"”‘]],)]/f‘t} :
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using J = (Jik)ix where Jy are the i.i.d normal random variables with Jj ~~
N(m,o?) and /Ty = (045)i; is a symmetrical matrix, we have

n
tr(B()JJ) = > JiBu(h)Jiy
l,k,p=1

= Z(vec(Jp))'B(h)Uec(Jp)

p=1

and

T
5
=
<
<
I
NE

Blk(h)alpka

Lk,
n

= > (vec(op)) B(h)vec(Jp).

p=1

=1

hS]

Hence, we have

E {etr[B(h)(Q Ft,JJrJJ')]/Ft}

I
=

i (vee(Jp)) B(h)vec(Jp)+2(vec(op)) B(h)vec(Jp) ‘|
er=1 t

E |:evec(Jp)'B(h)vec(Jp)JrQ(vec(ap))’B(h)vec(Jp)/Ft:| because (Jiy,) i.i.d

I
=

S
Il
_

e(mi)/B(h)mI+2vec(ak)’B(h)miE [65’02B(h)§+(2(m1)/B(h)a)+2vec(ak)/B(h)o)f/rt

I
=

k=1
n . i 3 —&' L A(h)e+(2(m1) B(h)o+2vec(or) B(h)o)e

= T et B+ 2veeow) B / ¢ i de
Pt V2w

e((mi)/B(h)aJr(uec(ak))’B(h)a)(zA(h)*l)(aB(h)(mI)JraB(h)uec(ak))

I
=

=
Il
_

e(m1) B(hymi+2(vee(oy))’ B(h)(ml)—3 log A(M through the Lemma 3.3 where
A(h) = I, — 20*B(h)

_ H etr[B(h)A(h)’l[(mi)(mi)’+2(m1)(vec(ak))’+202B(h)vec(ak)(vec(ak))/]—% log A(h))

k=1
_ etr[B(h)A(h)’l((mi)z-i-Q,/Ft,(mi)+2Ft,B(h)a2)—% logA(h)].
Thus
d 4 4+
(3.28) = tr [(VQQI + I'y- +Ty- ) B(h) + 2FtB(h)Q’QB(h)] +

A {etr[B(h)A(h)*l((mi)%rz/Ft,(mi)+2rt, B(h)o?)—2 log A(h)] _ 1} .
Identifying the coefficient of I';—, we get

OB(h) &+ P o + @/
o = (S B(h) + B(h)(

)+ 2B(h)Q'QB(h).
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Let us B(h) = ( )"1G(h) with F(h) € GL,(R) and G(h) € M,(R). We have

¢A = B(0) = F(0)~1G(0). In this case, take G(0) = ¢A and F(0) = I,,. In addition,
[F(h)B(h)] OF

we have 82 )B(h) + F(h) agglh) Then,
oG(h)  OF(h) B OB(h)
oh  Oh B(h) = F(h) oh
= Fm) |28y + B T 2B(h)Q’QB(h)}
- am? +2 Y P2 B0 + 2 0B M),

06 _ () (22
Hence, ah 2 !
{ 2B — 2G(h)Q'Q — F(h)(Z52).

B[G(h) F(h)}
Oh

Writing in matrix form, we have

So, the solution is [G(h) F(h)] = [G(0) F(0)] exp <h rﬂrT@, _262:/21> .

Bi(h) Bua(h)] 2L _2Q'Q
Let us |:B21(h,) ng(h)} = exp (hl 0 _‘IH_T‘I),]).
We have G(h) = G(0)By1(h) + F(0)Ba1 (h) and F(h) = G(0)Bia(h) + F(0)Baa(h).

Then, as B(h) = F(h)"'G(h), we have
B(h) = (G(0)Bia(h) + F(0)Baz(h)) ' (G(0) Bi1(h) + F(0)Ba1 (h)).

Moreover, as G(0) = ¢A and F(0) = I,,, then we have
B(h) = ((sA)Bi2(h) + Baa(h)) ' ((sA) Bi1(h) + Bai(h). (3.29)
Finally, by identification we have

dc(h)
oh

= tr[vQQ'B(h)] — \+
A {etr[B(h)A(h)’l((mi)QJr% /T,~(mI)+20,_ B(h)o?)—2% log A(h)] (3.30)

with ¢(0) = 0. Since 25 — _oG(h)Q'Q — F(h)(2£2), we get

6 =3 | 25 + Fn (P55 @)

Thus, tr(vQ'QB(h)) = tr [(vQQ'F(h)"'G(h)].= tr [%F(h)*lf’FW p(eey]
So,

(3.30) = tr[_” 19F(h) y@+<1>/] .

2F(h) oh 2 2

e tr[B(h)A(Rh) ™' ((mI)*+24/T, I)+2r,- B(h)o )7%logA(h)]'
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ch) = tr {%V(logF(h)—logF(O))—ﬂq)—i_q)/]

—M/ r[B(u)A@w) " ((m)?42/F, (mi)+2T, - B(u)o®) - log Aw)] 4,,

d + o’
— {— <1og((§A)B12(h) + Boo(h)) + I ; ﬂ Y
+)\/ P[Bw)A @) ()2 +2,/T,— (mi)+2T, - B(u)o®) 3 log A(w)] 4,,

where A(u) = I,, — 20%B(u) for all u € [0; h).
(I

Theorem 3.5. Let h > 0. If ® is an invertible matriz and
, —1
[In —2(sM)Q'Q(® + @)1 (e(PH+2)h In)} exists in the trace operator, we have

B(h) = |I, = 2(s0)QQ(D + @) (e* T — 1) A (331

[311(’1) 312(’1)}

Bsi(h) Baa(h)

e(q”T‘I’l)h —2(® + @/)71(e(<1>+2<1>’ Yh _ ef(é%‘y)h)Q/Q
—(*5E)h
0 e (T2

(3.32)

249’
2 _2QIQ

O ‘I>+‘I>l

Proof. Let be h >0 and T = , T% (T(S))ij, seN.

)

4P’ .
2 bl

1 1 1 2 / 2

1D = —20/Q: T — 05 TP — (52, TP = (2522 1) — 235000+
2 ’

2Q' Q(‘IH_‘1> )=0; T2(1) =0; T2(2) = (B5)2,
Now, let us con51der p > 1, in the trace operator, reasoning by recurrence, we have
T121(10+1) T(2)T(2p) +T(2)T(2p) (‘I>-S‘I> )2(p+1); T122(Z)+1) — T1(12)T1(§p) +T1(§)T2(22p) _
0; T221(10+1) T(2)T(2p) + T2(2)T(2p) 0, T222(10+1) — Tg(f)Tl(QQP) + TQ(;)T2(221’) —
(<I>+T<I>’)2(p+1),

In the trace operator, we have T(O) = I, si i = j and 0 otherwise; T1(1) =

Then using the values T(Jl) and T(Qp ) above, we have, for all p > 1
T121p+1 _ Tl(ll)T(2p) + T(I)T(2p) (@—EQ/ )2p+1; T122P+1 T(I)T(2p) + T(I)T(2p)

a2 (252)7 Q@ 3 0T LTI < 0, 1t = 1T +

T, Tpy" = — (252 )21,
Well, we have
Bu(h) Bu(h)|  _ wr
Bsi(h) Baa(h)
_ *i’(ms
—~ s!

Ji:’o (hT)@) X (hT) @ tD)
a 2p)! & e+

p=0
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e(FEh (2 )1 (o (B _ o=
q>+<1>’)h

0 e*( 2
The value of B(h) is obtained through the expression 3.29 and the B;;(h) above. O

=ImeQ|

Remark. The values B(h) and B;;(h) are not their true values but when they are
in the trace operator, they are reduced to these values. Fortunately, we can use
these values because at the beginning they are defined in the trace operator (see
characteristic function of volatility).

4. CHARACTERISTIC STUDY OF THE MODEL
4.1. Stationarity of T';.

Theorem 4.1. Let h > 0. If the following conditions are satisfied :
(i) v > n,
(ii) ® is a negative definite matriz,
(iii) A is a parameter in function of h such as Ah converges when h tends to
+o0 or
(iv) m and o are the parameters in function of h such as mh and oh converge
when h tends to +oco.

So the conditional process I'yyp, given Ty is stationary and converges to a Wishart
distribution.

Let be A € M, (R).

Theorem 4.2. Let f be an endomorphism of a vector space E. If f is split then
there exists a endomorphism single joint (u,v) such as f = u+wv; u is diagonalizable
and v is nilpotent; u commute with v.

Proof. see the reference [30]. O

Corollary 4.3. If A is a negative definite matriz and if it is triangularizable then
it is invertible and e tends to 0 when h tends to infinity.

Proof. 1t is obvious that if A is a triangularizable and negative definite matrix then
A is invertible. Moreover, under these conditions, e4” tends to 0 when h tends to
infinity. Indeed, A is similar to a triangular matrix 7. So we can find a passage
matrix P such as A = PTP~'. Moreover, according to Theorem 4.2, we can find
a diagonal matrix D composed of the eigenvalues of A which are negative non-zero
and a matrix N which is nilpotent and commutes with D such as T =D + N.
Let us assume N is a nilpotent matrix of index p.
So, for all A > 0, we have

A _ Th

e(D+N)R

= PN through the Campbell-Backer-Haussdorff formula

Nh N2h2 NP lhp 1

Dh

1, 0.
¢ ("+ 1! + 2! L (p—1)! )h—>—>+oo N
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Lemma 4.4. If A is a negative definite matriz then eATAD tend to 0 when h
tend to the infinite.

Proof. As A is a negative defined matrix, then A" and A + A’ are also negative.
The result follows so applying the Corollary 4.3. (]

Proof of Theorem 4.1. Up(A,h) admits a limit when h tends to infinity through
(3.23) if B(h) and c(h) admit finite limits or tend to —oo. As @ is a negative
definite matrix then B(h) converges to zero when h tends to infinity through the
Lemma 4.4.

In addition, we see that the characteristic function our model is similar to WASC
model by adding the term :

h - -
A/ et [B@A@TH (D) +2y/T, - (mD+20, - B(wo? ) =3 log Aw)] _ 14, (4.1)
0

in expression of ¢(h) in equation (3.24). So, in long term (that is, for h large
enough), we can regularize with A or m and o for the expression (4.1) don’t tend
to infinity when h tends to infinity under the condition of stationarity of WASC
model which are @ is a negative definite matrix. Using the change of variable by
doing u = vh, (4.1) becomes

1
)\h/ o[ Bm)A@R) T ((mi) +2,/T, (mI)+20, - Boh)o®)—% log A(wh)] _ 14, (4.2)
0

Let us for all v €]0,1[ and h > 0,
g(v,h) = {etr[B(uh)A(vh)ﬂ((mi)2+2,/rt, (mI)+2T,_ B(vh)o?)—2 log A(vh)] _ 1} AR,

G(u) = %, u €]0,1[. We have G(u) tends to 0 when h tends to +oo. Thus, we

can find Ty < u, we have | G(u) |< 3.

Let firstly A be a parameter in function of h such as Ah converges when h tends to

+00 where A the limit of Ak when h tends to +oc. Thus, we can find Ts < h, we

have A\h < % + A Distinguish six cases :

Case 1: 0 < h <100 and 0 < v < 1. We have | g(v,h) |< A1 where A; =
sup g(v,h).

0<v<1
0<h<100

Case 2: 100<u=vh<Ty <hand 0<wv<1. Wehave|g(v,h)|< Ay where
Ay = Su G(u maz (A + 1, \h).
2= Sw | Gu) | maz (A+3,Ah)
Case 3: 100 < Ty <u < hand 0 <v < 1. Wehave| g(v,h) |< As where
-1 \ o+ L
o= g, (e )
Case 4: 100 < u < h <T; and 0 < v < 1. We have | g(v,h) |< As where
Ay = .
! 1005322T1 | G(u) | 106”%%2T1()\h)
Case 5: 0 <u <100 <T) < h and 0 < v < 1. We have | g(v,h) |[< As where

_ \ 1
As = Oigoo | G(u) | Tl@ggn(k + 5, \h).

Case 6: 0 <u <100 < h <T; and 0 <v < 1. We have | g(v,h) |< Ag where
Ag= Sup |Gu)| mazx (\h).
0<u<100 100<h<Ty

Hence, | g(v,h) |< A where A = _ max 6(Ai) for all v €]0,1[ and h > 0.

In addition, g(v,h) tends to 0 when h tends to +oo for all v €]0,1[. So, by using
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the dominated convergence of Lebesgue theorem (see the reference [7]), (4.2) tends
to 0 when h tends to +o0o. And thus, Ur, (A, h) tends to e~ 27 108(n=221(sA)) wwhich
is a characteristic function of Wishart distribution with vec(21) = —(1, @ 2+ @ ®
I,) Y ovec(Q'Q) (see the reference [13]).

Now, if m and o are the parameters in function of h such as mh and oh converge
when h tends to +oco. Let 7 be the limit of mh when h tends to +oco. We

have sup (G(u)Ah) tends to 0 when h tends to +oco. So, we can find T < h,
0<u<h

| sup (G(u)Ah) |< 3.
0<u<h
Distinguish also six cases :
Case 1: 0 < h <100 and 0 < v < 1. We have | g(v, h) |< 4.

Case 2: 100 < u =vh <T < hand 0 <v <1 We have | g(v,h) |<
1+ ggptr(QB(u)ml\/F_t).

Case 3: 100< T <u<hand 0 <v <1. We have | g(v,h) |<

Case 4: 100 < u < h<T and 0 < v < 1. We have | g(v,h) |< By where
B, = 10622 , | G(u) | mgggT(Ah) :

Case 5: 0 <u<100<7T < h and 0 <v < 1. We have | g(v,h) |< 3.

Case 6: 0 <u <100 < h <7y and 0 < v < 1. We have | g(v,h) |< By where

By = .
? ogilgﬂljoo |G IOQ%J%T()\M

Hence, | g(v, h) |< B where B = rr_lfiué(Al,B 1) for all v €]0,1[ and h > 0.

iy 9

1
3

Since g(v, h) tends to 0 when h tends to oo for all v €]0, 1[. So using the dominated
convergence of Lebesgue theorem, (4.2) tends to 0 when A tends to 400 and thus
Tr, (A, h) tends also to e~ 317 108(In =2 (sA)), O

Theorem 4.5. Let I' be the limit of the stationary distribution of I'y. Then, '
is the solution of :

Foo® + T + A(m1)\/Too + A/ Too(ml) = —vQ'Q — Anc?I, — n\(m1)%. (4.3)

Proof. Using the following SDE of T'; :

dl'y = (vQ'Q + OTy 4+ ' ®'dt + VT dW,/Q'Q + VQ'Q(dW,)' VT + VTdP; +
(dP)' /Ty + dP,(dP;) with

Ny
P, = %" J; where J; = (Jj ki)m is a n x n dimensional matrix such as J; j; for all
j=1
J, k and [ are the i.i.d normal random variables with J; i ~~ N (m, c?), we have for

a very small positive h,

Dipn =Ty = (vQ'Q 4+ I't®' + ST )h + VT (Wi, — Wo)'VQ'Q + VQ QWigh, —
Wi)VTi + VT (Pign — Pr) + (P — Po)'NTe + (Pegn — Pr)(Pogn — P

Moving to conditional expectation, we have

E{Tiin — T¢/Te} = (vQ'Q + T1® + Ty )h + VTH(E{Wipn — Wi/T:})'VQ'Q +
VQQE{W; i, — Wi /T3y + (E{Pryn — P/T:})' VTt + VTE{ Py — Pi/T} +
E{(Pesn — Po)(Pen — P2)' T4}

Using the independent and stationary increasement of a Brownian motion and the
compound Poisson process, we have

E{T14n—T¢/Tt} = (vQ Q4T @ +OT, ) hA- /T (E{W),— Wi })' V@' Q+ Q' QE{ W), —
Wo}\/ﬁ+(E{Ph7P0})/\/ITt+\/].—TtE{Ph7P0}+E{(thpo)(Ph7P0)/} with Wy =0
and Py = 0.
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Thus, its latter is equal to

(vQ'Q + Ty @ + BTy )h + Ah(ml)y/T; + A/Ti(ml) + \hno?1I, + n\h(ml)?.
Doing tend ¢ to +00, we have

0=vQ'Q +To® + BT + A(m1)yTw + M Too(ml) + Ano?I, +nA(ml1)2,
That is, I's, is the solution of

Foo® + L + Aml)VToo + MW (ml) = —vQ'Q — Ano?I, — nA(ml)>2. O

4.2. Correlation between yield and its volatility. We assume that the model
checks:

i) each component of the vector By is independent with the one matrix Wt (see the
third equation in (1.3));

ii) the continuous part of the yield log S; and the continuous part of its volatility
T'; are linearly correlated.

Theorem 4.6. The covariance between the each component of vector yield noise
dlog Sy and the one volatility noise matrixz d'y is given by for all i,j,h=1,....,n

n n

cov(d(log Spt) , d(I'sjt)) = <Fhi,t > Quipt + Thja ZQMPZ) dt, with  (4.4)
1=1 1=1

log S.+ is the component of the yield vector log S,

p. is the component of vector p,

I ; is the component of the volatility matriz I'y and

Q..1is the component of the matriz Q' Q.

Proof. From the expressions v/I'y = (04j,t)1<i,j<n Which is symmetrical and I'; =
(Tij,t)ij=1,....n, We get

n
Lije = Zail,tajl,t- (4.5)
=1

Now, let be i,j,h € {1,...,n}.

We have cov(d(log Sh+)¢ , d(I'sj+)°) = < d(log Sh.+)° , d(T'i5+)¢ > with d(log Sp +)°

is the yield noise of log S} + in the continuous part which is the h-th line of dlog S;
F n

defined in equation (1.3) by d(log Sk+)¢ = <Mh — hh’t) dt + Y ongtdZy . And

2 k=1
d(T';j,+)° is the component i-th row and j-th column of d(I';)¢ with

d(Tije)® = ( > QuQj +Zq)zlrl]t+zrzltq)]l> dt
=1 =1 =1

3

[M=T

+ (Uim,tdWml,thj + Ujm,tdWml,thi)- (46)

m,l=1

So
< d(lOg Sh,t)c R d(Fij,t)c >

n

n
=< Zghk,tdzk,t ; Z (Cim AWt Q1 + 0jm AW+ Qui) >
k=1 m,l=1
n

=< Zahk,t(\/ 1—p'pdBy,: + Z AWip,tPp) Z (Tim,t AW+ Qi+
k=1 p=1

m,l=1
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Tim AWt Qui) > . (4.7)

Since each component of the vector B, is independent with the one matrix Wt, then
< dBpyt , dWgm >=0V k, s and m.

So, using
O0si(k,p m,
< AWipt » AWt >= { dt ot(hervvi)szé ( ) ’ (4.8)
we have
A7) = <D one D dWipipp > (Cim tdWon1,4Quj + Tjim 1d Wi 1 Qi) >
k=1 p=1 m,l=1

NE

n
= Z (Ohk,t0ik,tQuiprdt) +
=1 k.l

(Ohk,t0jk,t Quiprdt)

ko

1

I
NIE
M=

(Ohk,t0ik,tQuiprdt) + (Ohk,t0jk,t Quiprdt)

k=1 k=1
= (Fhi,t Z Qujpt + Thje Z QliM) dt, through (4.5).
=1 1=

We assume that the model also checks:

i) the correlation between each component of the vector logS; and the one
matrix I'; is negative (volatility leverage effect),

ii) the correlation between each yield of the log basket log .S, ; and the one
correlations (pq ¢, p,¢ = 1,...,n and p # ¢ is negative (correlation leverage
effect) where (pq,¢ is the correlation between I'pp, ¢ and I'gq; defined by

C ;= qu,t
pg,t — :
vV Fpp,trqq,t

Theorem 4.7. The expressions of correlations between each component of the vec-
tor log Sy and the one matriz T'y at time t are defined by:

(4.9)

n
> Quipr
corr((log Sit)¢ , (Tiie)¢) = L,i =1,...,n. (4.10)

Nptor
=1

So, the sign and magnitude of the skew effect are determined by both the matriz Q
and the vector p.

Proof. Let be i € [| 1,n |]. The standard deviation of (logS; )¢ is /T ¢ Indeed,
we have
tT(DlI‘t)
d(logSy) = [ p+ : dt ++/TidZ;. So Var(d(log S;)¢) = T'ydt.
tT(DnFt)
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The standard deviation of (I'y; +)¢ is

Indeed, we have

Var((dFm-,t)c)

By using the correlation formula on an affine line r, , =

corr((log Si¢)¢ , (T'iie)©) =

< (Tip)e>=2,|Tuis ZQ% (4.11)

=1

< d(Ty)¢ 5 d(Tii)¢ >

< Z Oim, tdWml thz + Oim, tdWml thz) )

m,l=1

n
Z (Uz’m,tdWml,thi + Uz’m,tdWml,thi) >

n
Z (Aoim10ipt < AWt , AWpgt > Q1iQqi)

m,l,p,q=1

Z (4aim7t0im,t1dtQi—), through (4.8)

n
Al 4 Z Qi.dt, through (4.5).
=1

cov(x , y)
OL0y

, we have
<(log Si,+)¢ , (Ti4,e))>

RV Fii,t\/< (Tai,e)e>

From the equations (4.4) and (4.11) and imposing 4, j, h = 1, we have

corr((log Sit)¢ , (Tiie)S) =

n
2L > Quipi
=1

\/m(zm)
=1

n

> Quipi

=1
n 5 :
> QF
=1

4.3. Dependence between yield and its correlations.

Theorem 4.8. The expressions of covariances between each yield noise of the bas-
ket log Sp+ and the correlations noises Cpqt, p,g = 1,...,n and p # q are given

CO’U(d(lOg 'S’;r),t)C ) Cpq t <Z qu/’l) pp i (1 — Cpq t) t (412)
V qq,t

with (Cpg,t)° is the continuous part of (pq.t-

by:
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Proof. Let be p,q € {1,...,n}, p # q.
Applying Tto’s formula on Levy’s process f(I';) = —Lret e get

vV Ppp,tlqq.t
1

11 1
dCprr = dlpgt  2\Tops [ Tpgt dre. . — 2 V/Taqs Lpgt dr'e
Pq, m pp,t m qq,t

vV Fpp,trqq,t Fpp,t

1 — 02 f(Ty)

Lqpt

= ————d< (Ty), Tr)° > T, T,_J
+5 ij;_l T30 w0 (i), k) > +[f (L= + V- J+
J T + JJ') — f(T=)]dNy.
So
dF t ]_ F + 1
d(C 7t)c = Pq — prq, dre s
" \/Fpp,trqq,t 2\/Fpp,trpp,t V qu,t et 2 qu,trqq,t
qu t 1 = 32f(rt)
= | Al + 5 o —d < (Dig)", (D) >t
( FPW) w2 ij k=1 OL'ij 100 ke ¢ ’
(4.13)
However
d<(Ti), (Th)® >t
=< d(F” 1), d(rkl,t) >
n n
=< Z (Uim,tder,thj +Ujm,tdWm7',tQ7'i) , Z (Ukm,tdWm7',thl+
m,r=1 m,r=1
Ulm,tder,thk) >
= Z O—’imO—kp,tder,tdes’thstl + Jimgto—lp,tdWMT,tdes,terst+
m,r,p,s=1

Ojm,t0kp,t der,tdes,thiQsl + Ujm,talp,tdWm7‘,tdes,t QriQsk

n
= Z Uim,takm,tdtQTjer + O—im,to—lm,tdtQTjQrk + Ujm,to—km,tdthier+

m,r=1

O jm,t0im, tdtQriQr, through (4.4)

n n n
=Ty cdt Z QrjQri + Ty edt Z QrjQri + Ljp i dt Z QriQri+

r=1 r=1 —1
Tjredt > QriQr, through (4.5).
r=1

Then (4.13) is equal to

dlpg,t)® 1 Thge <d(Fpp,t)c
\/Fpp,trqq,t 2 \/Fppytrqqyt

+

d(qu,t)C> L ALY
+_
Lpp.t Loq.t 2 ik l=1

Ol'3;,+0 1+
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n n n n
Dk, Z QrjQri + T Z QrjQrie + i Z QriQri + T Z QriQri | dt.

r=1 r=1 r=1 r=1
(4.14)
Hence
cov(d(log Sit)* , d(Cpg,t)®)
_ cov(d(log Si )¢ , d(I'pg,t)°) 1 Dpg,t
A Fpp,trqq,t 2 Fpp,trqq,t
(cov(d(log Sit), d(Tppt)°) n cov(d(log S )¢, d(I‘qq,t)C))
Fpp,t qu,t
n n
Fip,t Z quPl + Fiq,t Z lepl
=1 =1 1 qu t
= dt — — -
Vv Fppytrqq,t 2 V Fpp,trqqyt
n n
2Fip,t Z lePl 2Fiq,t Z quPl
=1 dt + =1 dt |, through (4.4)
Fpp,t qu,t
(qu,tFip,t - qu,tFiq,t) Z qu/)ldt (Fpp,triqi - qu,tFip,t) Z le/)ldt
=1 =1
= +
qu,t Fpp,trqq,t Fpp,t\/ Fpp,trqq,t
(4.15)
Assuming ¢ = p, we have
n n
Laq,tlpp,t D Quapt — Tpg,tTpgt Y- Qugpr
(4.15) = =1 =1 dt
quyt V Fpp,trqqyt
= i Qiep Dpp,t _ Upa.t Dpg.t dt
=1 Lgq.t Cpp,tlagt Taq,t
" /T
t
= Zqupl Fpp (1—¢7, )dt, through (4.9).
=1 qq;t
O

4.4. Up-jump and down-jump. On the one hand, our jump process ¥; can make
the volatility I';y to down jump even it respects its positivity through the expression
of T'; of the form (1.2). On the other hand, a jump on the volatility will cause a
jump on the yield with the direction and frequency which depend the parameters
; where the ; are the components of the vector ¢.

4.5. Return to average. It is a very negative bias towards the average. The
deterministic part of O.U process on R k(6 — z;) defines its return. The form is
imitated by the recall force of a spring expressed by || F ||= k|L — Lo| where k is
the stiffness coefficient of spring and Ly is its empty length.
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4.6. Clusters of volatility. The level of volatility depends essentially the level
of volatility at the previous moment, which makes it possible to model periods of
high volatility and periods of low volatility. Hence, we observe a high volatility no
punctually but on the moment interval or the periods of high volatility generally
followed by periods of high volatility. Its phenomena calls the clusters of volatility.
The term +/T; on the diffusion in the dynamic of volatility can to render account
the periods of high volatility.

5. APPLICATION

We resume at first the C-GMM method (dependent data) to estimate the model
parameters but the details of its method are in the references [9, 10, 14]. And we
present after the results of estimations of the CAC40 and SP500 indexes by using
the model with its stylized facts.

5.1. Use of C-GMM method. Let h; be the continuum of moment conditions
defined by

hy = es<wYemiYer _ X (5.1)
with w € R™, X is a stochastic function of the process parameters and g(Y;) be an
arbitrary instrument. We determine X by the relation :

E(hig(Yi)) = 0 E (570712 /Y;) — E(Xg(V1)) =0, (5-2)
Chacko and Viceira (1999) showed that
X =F (e§<’w,Yt+17)/t>/}/i) . (5.3)
In our case,
X = COE <e<A(1)’F‘>/Yt) = COPp, (—cA(1), 1) (5.4)

with A(1) and C(1) ) are the deterministic functions of the characteristic function
Uioy s, (w, 7) = eMADTO+BEYi+0(),

(5.2) is well defined if g(Y;) = 1 or (Y¥3) and (I';) are independent processes. But
the second Assumption is not valid for our model. So, we suppose that g(¥;) = 1.
Let now, iz() be the empirical moment of h from R™ to C defined by

R 1 <&
h(w,0) = — > hi(w, 0) (5.5)

where 6 is the parameter vector of the model.
The C-GMM estimator of 4 is defined by

0 = arg min | K== h(0) || (5.6)
0
where K is the covariance operator and || . || is the norm defined by
1712= [ Ty (57)

with 7 is a probability measure.
Carrasco (2007) have shown that the operator K can write as

Kf(w) = / (w, A) F\)m(\)dA (5.8)
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with w, A € R™, k is the coefficient defined by

k(w, \) = f Ef (ht(w,eo)ht_m,eo)) (5.9)

j=—o0

where 0 is the true value of 6.
To build K, Carrasco (2007) proposed the following steps. The first step is to find

0, = arg min || hp(6) || . (5.10)
0

The second step consists to estimate the coefficient k£ by

(e, 00, w0,) = —— _TZ o (Z) ) (5.11)

= q j=—T+1 ST
with
T R
. % Z ht(wS;wTaol)htfj(wv;wwael)aj >0
I'r(j) = =i where w(.) is the coef-
% . Z+1 ht-‘rj(ws; Wy, el)ht(wv7 Wy, 91); .7 < O
=—J

ficient satisfying the conditions defined in the work of Carrasco (2007) and St is
the bandwidth parameter of w.

When K is estimated, the minimization of (5.6) requires the inverse of K. Carrasco
(2007) used Tikhonov’s approximation which generalizes the inverse of K. Let «
be a strictly positive parameter, then K1 is replaced by (K*)™! = (K?+al) K.
So the optimal C-GMM estimator of § is obtained by

0 = argemin | (K*)"*he(6) || - (5.12)

Asymptotic convergence: VT (6 — 6) 5N (0, (< E%(Vyh), E%(Vgh) >K)71)

when T and T“(aT)% tends to infinity and a7 tends to 0 with Vgh is the Jacobian
matrix of h(.).
Let us

Uhy(w,0F) = w(0)hy (w, 0%) + i w <5;’—T) (s (w,08) + hess (w, 6))  (5.13)

with the convention h;(w,0%) = 0if £ < 0 or t > T and in the case where (h;) is
uncorrelated, the form simplifies Uh; = h;.
Carrasco (2007) have shown that the resolution of (5.12) is equivalent to

min W' (0)(arIr +C*) 'V (6) (5.14)

with C' is the T' x T" dimensional matrix whose the components are Tct_lq where ¢

is the number of parameters of #; I is the T' x T' dimensional identity matrix;
V(0) = (Vi(0),...,Vr(0)) and W(0) = (W1(0),...,Wr(0)) are the T-dimensional
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vectors where

Vi) = [ Uhw, 8w, 6)(w)dus (5.15)
Wio) = [ huw,0p)er(w O)m(w)du (5.16)
i = / Uy (w, 65 (w, 65 ) (1) du. (5.17)
And the C-GMM estimator < E?%(Vyh), E%(Vyh) > is given by:
< Vohr(Or), (K*7) ' Vohr(br) > = ﬁﬂ(éT)(aTIT +C?)'V(0r)
(5.18)

with C is the matrix defined above, V. = (V4,..., V) and W = (W, ..., Wr)’ are
the T' x ¢ dimensional matrices where

W), = / Uhe(w, 65)V g, hor(w, O )e(w) (5.19)
Wy); = / he(w, 07)V o, by (w, O ) (w)dw. (5.20)
5.2. Gradient of the characteristic function. Let Y; = log(S;) be the yield of

underlying and § be a component of the vector §. Denote by dsf(6) the partial
derivative of the function f(#). We have

05 Wyi,r, (w,7) = (tr(D5 A(T)Te) + 95C(r) Wy, r, (w, 7) (5:21)
with
OpA(T) = —Aoa (1) 105 A2 (T)A(T) + Aga(7) 105 A2 (7) (5.22)
05C(r) = tr ((9sm)71(e7) = SOslog(An(r))) — 5

tr (‘95‘I> + 05 cwds(pVQQ) + 35(x/Q’Qp)<w’>
2 2

49 [ (et (GmDP VT4 o%rs) g toms] 1) (5.93)

Let us G =

(2+swp' VQ'Q)+(@+swp' VQ'Q)’ 200
2
*é Z Sw;e;; + %(gw)(gw)’ _ (‘I’Jriwﬂ’\/W)J;(@Jrgwp’\/W)’ .

i=1

If 8 = Py, then we have

ertey 0
e e (5.24)
2
If B = Qu where VQ'Q = (Qpi) ki, then we have
chpswitswr'en o0 [O0e, + ¢ QD)
= Kl
%G = (2) _ehupsw'tswp'en ' (5.25)
2
If 8 = p;, then we have
V@' Qersw’ +swe vVQ'Q 0
aBG - (2) \/Q'Qemwurqwe;m (526)
2
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where (e;) is the canonical basis of R™ and (ex;) is the canonical basis of M,,(R).
In addition

95€™% = Deap,05(1G) (5.27)
where Degpy = X =2 and ady = [X,Y] = XY — Y X.
Let us PyyL = Lgo with L = [L“ L”}
Loy Lao
We have
9plog(A22(7)) = Digg, gy (r) (P22 Deap,0(7G)) (5.28)

where Dy x(H) = PMo, 0 (P"*HP)P~1, P is the matrix associated of the eigen-
vector of X, Ao B = (a;;b;;) where A = (a;;) and B = (b;;) are the matrix in

1 logA1 —logha
Mu(R) and Miog = | 1500, 1ogrs AT Az ] for n = 2.
T A pY)
We have also
GC(T)\I/FO(ng(T),t) _ etr(B(t)F0)+c(t)+C(T) (529)
with
B(t) = (A(T)Bia(t) + Ba2(t)) " (A(T)Bi1(t) + Bar(t)); (5.30)
D+ P’
c(t) = —%tr [log(A(T)Bu(t) + Baa(t)) +t J; ] -
A /t etr[B(u)A(u)*l((mi)%z,/rt,(mi)+2rt, B(u)a2)—%logA(u)]du (5.31)
0
/ / 7 7 /
o) = tr {m(w)' -2 <logA22(T) 22 el VICL VPO ﬂ
AT (etT[wLFl(%(mi)2+\/F—,,(mi)+%02Ftw)—% log;t] _ 1) ) (532)
And
9pe” T, (—cA(7), 1) = e“T WU, (—cA(7), ) (tr(95 B(t)T0) + dpe(t) + 93C(7))
(5.33)
with
9pB(t) = —(A(T)Bra(t) + Ba2(t)) (s A(T) Bi2(t) + A(7)p Bua(t) + 05 B2 (t)) ™
B(t) + (A(1)B12(t) + ng(t))_l(agA(T)Bu(t) + Bo1(t)); (5.34)
v
Opc(t) = —5tr[Diog,a(r)Bia(t)+Baa(t) (05 A(T) Bra(t) + A(7)9p Bua(t) + 05 Baa(t))]

t - =
+8ﬂ/ Ael"[B@A@) T ((m)?+24/T, = (mi)+20, - B(u)o®)~§ log Aw)] _ \ 7,
0

(5.35)

5.3. Variation of correlation. To see the correlation leverage effect on the graph,
we need the expression of correlation noise. From the expressions of (4.6) and (4.14),
we get

d(Ci2,)¢ = (At<122,t + BiCi2,t + Cy)dt

+ (011,tQ12 +021,tQ11 . <U11,tQ11 + 021,tQ12> <12,t> qu,t

VARTIP ST [



28 T.R.H ANDRIANANTENAINARINORO, T.J.RABEHERIMANANA

+ (011,tQ22 +021,tQ21 _ (011,tQ21 + U21,tQ22) C12,t) qu,t

\/m Fll F22
012,4Q12 + 02241 Q11 0124Q11  022:Q12
+ : : _ , i , AW
( VT < T'ip Ty Gz, 21,
\/m Fll F22

(5.36)

where

A - (Q11Q21 + Q12Q22)  Pi2y/T22:  Po1/T11y (5.37)
t - - - .

VANTRIESR WVANER: VT2
v(Q3 + Q%) v(Q3 +Q3) L +Q3 | QL +Q3

By = - - + + 5.38
’ 21, 29, 211, 29, (5.38)

c, = v(Q11Q21 + Q12Q22) B 2(Q11Q12 + Q21Q22)  P124/Ta2y  Pary/T'11¢

+ +
vT11,022 ¢ VARTRINY R VANEE: V122t

(5.39)

5.4. Results of estimation. We present successively in this part : the indexes
with the data and the initial parameters used on the one hand; the technical of the
simulation on the other hand; and finally, we given the results obtained.

5.4.1. Monte Carlo study. We used the daily CAC40 and SP500 indexes. For each

stock, the time series start the January 03, 2017 and end the February 28, 2017

which are presented by the following figures 1 and 2.

We are restricted to two underlying (n = 2). The initial parameters used in the

simulation Sge: A

Lo = —()6900;4 0(.)6?(4)1?1 ] @ = {—0?5 —055} = (=1,—1) p = (-0.3,-0.4);

v =15 m = 0.01; 0 = 0.01; A = 04; o = 0.00225; » = 0.05; VQ'Q =
0.12015891 —0.01131245

[—0.01131245 0.09515434 } ’

The matrix +/Q'Q is obtained by using the long-term relationship (4.3). It is a

necessary condition for the process I'; to be stationary.

The table 1 shows the descriptives statistics of the data used.

The figures 3 and 4 displays the C-GMM method criterion.

The table 2 presents the C-GMM estimator él defined by the equation (5.10).

The results of the estimates of 6 with its standard deviations of errors are presented

in the table 3.

The table 4 presents the two measures which evaluates the performance of estima-

tion method.

The figures 5, 6, 7 and 8 give the characteristics and stylized facts captured by the

model and show also the forecast of two courses CAC40 and SP500.
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5.4.2. Empirical results. We present the results studying the data by statistics de-

scriptives analysis.

Table 1 : Analysis by descriptives statistics

Index | Min. | Ist Qu. | Median | Mean | 3rd Qu. | Max.
CAC40 | 4762 | 4844 4887 | 4885 4915 5027
SP500 | 2252 | 2272 2297 2317 2366 2395

The two underlying are no dispersed with compared to average. The price of CAC40
can be adjusted by the Gaussian distribution N (4885,66.76434) ) and the price of
SP500 by N(2317,46.19202).
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Real part

0.0

1.0

FIGURE 3. C-GMM estimation criterion

The figures 3 and 4 show us the values taken by : real and imaginary part of the
empirical moment of continuum h defined in equation (5.5) and using the initial
parameters presented in top. The figures show us that the minimizations of (5.10)
and (5.6) exist.

Table 2 : C-GMM estimator él
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Imaginary part

0.0

1.0

FIGURE 4. C-GMM estimation criterion

parameter estimator
P1 0,315492372
P2 0,125872773
Qu 0,106537319

Q12 = Q21 | 0,000000000
Q22 0,100000000

Py -5,042305318
Do -0,009478153
Dy -0,010086226
Doy -4,994793370
v 15
r 0,046348362
A 0,530854308
1 -0,962462315
V2 -0,968014487
o 0,240879750

m -0,010000000
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The minimum value for (5.10) is || hzp(61) ||= 3,965848.10~7.

Table 3 : C-GMM estimator 6

parameter estimator error standard deviation
p1 -0,300319856 0,2945596
P2 -0,400413190 0,2932194
Qu 0,100000000 0,2606736
Q12 = Q21 | 0,019316928 0,2624421
Q22 0,100000000 0,2108252
O3 -5,000272633 0,1096068
D19 -0,052671480 0,1866816
Doy -0,052652136 0,1865025
Doo -5,000203409 0,1132604
v 15 2,074395
r 0,010835953 1,383036
A 0,400197918 2,072974
»1 -1,000097060 4,903149.10~ 19
V2 -1,000086892 4,903145.10~1°
o 0.013988008 5,339199.10~%9
m 0.009962586 5,339199.10~%9

The minimum value of (5.14) is 1,959312.10~°.

Table 4 : Mean Bias and RMSE (Root Mean Square Error)

parameter Mean Bias RMSE

01 0,00477225 0,2725201
02 -0,06413952 0,3444207
Q11 0,03423131 0,1477892
Q12 = Q2 0,1178646 0,2369885
Q22 -0,05795468 0,2426288
Pqq 0,02661671 0,1061759
[P -0,03949117 0,2323495
Doy -0,05023514 0,1721152
Poo 0,001419603 0,1094503
0,707043 1,921048
r 0,1616506 1,500114
A 0.1063068 1,952471

01 —1,388808.10719 | 4,854741.10~19

V2 2,516983.10~2! | 6,363063.10~ 17

o —2,287424.1079% | 5,595695.10~9

m 2,424562.1079 | 6,135287.10~%°

In modeling, we know that a model is pertinent if its volatility is very small,
so we estimate o very small. In the figures of volatilities of CAC40 and SP500
below (figure 6) where we simulate again and simultaneously the volatilities of the
indexes CAC40 and SP500 with theirs yields and correlation, there exists a jump
captured by the model in time 214. The impact of these jumps on the yields are
presented in the figure 7. Here, the assets prices under the impact of jumps are
difference compared with the one of WASC. At time 214, the asset values of CAC40
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Observed volatility noise of CAC40 Observed volatility noise of SP500
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Fi1GURE 5. The characteristics captured by the model

and SP500 decrease respectively to -0,0062295 and -0,0086550 compared with the
one of WASC.

Using the expressions of correlations defined by equation (4.10), we find

corr((log S1,4)¢, (T'11,4)¢) = —0,3701 < 0 and corr((log S2,1)¢ , (I'22,4)¢) = —0, 4496
< 0 which we show us the asymmetrical correlation between the assets and its
volatility. Graphically, the figure 6 associated with the figure 7 shows us this
volatility leverage effect.

When we calculate numerically the sign of covariance defined in (4.12) Z Qiqp1,

we have find —0, 0458 < 0 is the sign of covariance between the asset CAC40 with
the correlation and —0,0377 < 0 is the one of SP500 with the correlation which
we show us the asymmetrical correlation between the assets and its correlation.

Graphically, the figure 7 associated with figure 8 shows us this correlation leverage
effect.
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Observed volatility noise of CAC40 Observed volatility noise of SP500
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FIGURE 7. Yields noises of CAC40 and SP500

6. DISCUSSION

We have developed a model which estimates the value of a basket carrying several
underlying assets whose price is characterized primarily by jumps, clusters, return
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Correlation noise
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FiGURE 8. Correlation noise between the volatility of CAC40 with SP500

to average, volatility and correlation leverage effects. The implementation of the
jumps process ¥; in volatility stochastic and the new form respecting the stylized
effects of the WASC specify the model. By taking o estimated very small, the
jumps exist and help the volatility of stochastic volatility of WASC to increase its
value. In addition, if the impact frequencies of jumps ¢; and @9 estimated are
significant also, the model captures the value of assets perturbed. So, our model is
always pertinent even if there exists the recent turbulences on the market because
the jumps stabilize the value of ¢ estimated and capture the values perturbed by
jumping. However, the WASC model can’t to be the best model to estimate the
assets prices perturbed because either it try to capture the values perturbed by
obtaining o estimated mostly big (there is an anomaly) or it don’t capture the
values perturbed.
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