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WASC STOCHASTIC VOLATILITY JUMP

TSILAVINA RAVO HASINA ANDRIANANTENAINARINORO
TOUSSAINT JOSEPH RABEHERIMANANA

Abstract. In this article, we develop a model which estimate the value of a
basket of the underlying assets. The aim of this paper is to obtain a new form
of a model, the stylized facts of WASC model and consider the risk created by
the turbulence effect on the market which causes by the abrupt and sudden
movements in underlying prices. In this case, we transform WASC and change
the O.U-type process used in the WASC model into a Levy process in Rn with
jumps below. Our task is then to find the conditions on the parameters of the
model by regularizing the volatility in a way so that it remains positive definite
even if it jumps, capturing the stylized facts of WASC model and obtaining
the closed form expression of the characteristic functions of the model.

1. Introduction

Famous on the stylized facts, WASC is a reference for a multidimensional model
to evaluate the value of a basket of the underlying assets. Moreover, Multivariate
Stochastic Volatility Models of O.U type gives account of the risk created by the
turbulence effect on the market which is not captured by WASC. Indeed, The recent
perturbations in the financial market induce unexpected and unpredictable events
on the assets prices (rare occurrences) which are difficult to capture by a continuous
model or WASC because the value of volatility of Γt expected is mostly big (there
is an anomaly). So, we want elaborate a new multidimensional model which gives
account all the risk created by the perturbation on the market and the stylized
facts of the WASC model at the same time.
To explain this risk created by the turbulence effect on the market, we introduce
a jumps process ψt in the model dynamic of volatility. To do this, we change the
O.U-type process in Rn used in the WASC model dxt = Φxtdt+QdWt into a Levy
process in Rn

dxt = Φxtdt+
√

Q′QdWt + dPt (1.1)

where

• Φ and Q are n× n dimensional real matrices
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• Wt is a n-dimensional stochastic vector whose components are standard
Brownian motions and

• Pt is a n-dimensional vector of compound Poisson process.

Thus, we obtain the differential dψt above by deriving the volatility of the form :

zt =

ν
∑

i=1

xi,t(xi,t)
′ (1.2)

where ν is a positive integer nonzero and (xi,t)t i = 1, ..., ν are the n dimensional
vector of process defined by (1.1).

How to transmit the jumps of the volatility towards the yield? The Multivariate
Stochastic Volatility Models of O.U type inspires us to introduce the parameter ϕ
by producing with the jumps process of the volatility ψt and we obtain a model of
the form:






























d logSt =



µ+





tr(D1Γt)
:

tr(DnΓt)







 dt+
√
ΓtdZt + dψtϕ

dΓt = (νQ′Q+ΦΓt + ΓtΦ
′)dt+

√
ΓtdW̃t

√
Q′Q+

√
Q′Q(dW̃t)

′√Γt + dψt

dZt =
√
1− ρ′ρdBt + dW̃tρ

dψt =
√
ΓtdP̃t + (dP̃t)

′√Γt + (dP̃t)(dP̃t)
′

(1.3)
with

• ν is a positive integer nonzero;
• ϕ and µ are vectors in Rn;
• Q and Φ are n× n dimensional real matrices;
• Di, i = 1, ...n are n× n dimensional real matrices;
• dZt =

√
1− ρ′ρdBt+dW̃tρ defines the stochastic correlation noise between

the yield logSt and its volatility Γt on the continuous part of the trajectory;
• ρ = (ρ1, ρ2, ..., ρn)

′ where ρi ∈ [−1 , 1];
• Bt is a n-dimensional vector whose components are Brownian motions;
• W̃t is a n×n dimensional stochastic matrix whose components are Brownian
motions;

• P̃t is a n × n dimensional stochastic matrix whose components are the
compounded Poisson processes;

• y′ is the transpose of the vector y;
• H ′ is the transpose of the matrix H ; tr(H) is the trace of the matrix H .

Our study is therefore to provide conditions on the parameters of the model so that
it can be used to estimate the price of a basket carrying several underlying assets
by accounting for the risk created by the turbulence effect on the market and the
risks treated by the WASC model.
In the later section, we try out to estimate the values of the indexes CAC40 and
SP500 using our model and we estimate the parameters of model by using the
C.GMM (Generalized Method of Moments based on the continuum of moment
conditions) method based on the historical data.

2. Model

In this section, we will see successively : details of the dynamics which lead to
this multidimensional model on the one hand; the characteristics specifying this on
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the other hand; and finally, we give the characteristic functions of the model to
estimate its parameters.
Let (Rn , P ) be a probability space where P is the ”risk-neutral” probability such
that the price of any option is a conditional expectation of its future income.
Let us consider a market of a basket carrying n underlying assets.
Let St be the value of this basket at time t and log St is its return.

2.1. Dynamic of volatility. Let (xt)t≥0 be a process in Rn defined by (1.1) and
(zt)t≥0 be a form of (1.2).

Proposition 2.1. zt is a positive definite matrix if and only if ν ≥ n ≥ 1.

Proof. ”⇒” This is obvious for ν = 1.
Let us now consider for ν ≥ 2.
Using absurd reasoning, suppose that n > ν and zt is a positive definite matrix.
Let a n× ν dimensional process be :

d(Xt)
′ = Φ(Xt)

′dt+
√

Q′QdW̌t + (dP̌t)
′, (2.1)

where

• (Xt)
′ = (x1,t, ..., xν,t) is a n× ν dimensional stochastic matrix;

• W̌t = (W1t,W2,t, ...,Wν,t) is the n × ν dimensional matrix where the Wi,t

are the Brownian motion vectors of xi,t, i = 1, ..., ν;

• (P̌t)
′ = (P1t, P2,t, ..., Pν,t) is the n × ν dimensional matrix where the Pi,t

are n-dimensional vectors of compound Poisson process of xi,t, i = 1, ..., ν.

We have zt = (Xt)
′Xt. So rank(zt) ≤ min(n, ν). And since ν < n, then we have

rank(zt) < n .
In addition, as zt is a n×n dimensional matrix, then zt is singular and therefore it
is not positive definite. A contradiction with zt is positive definite matrix.
”⇐” Suppose that ν ≥ n ≥ 1 and we show that zt is positive definite matrix.
Let y ∈ Rp, y = (y1, y2, ..., yp)

′. If we develop zt of the form (1.2) and assume
xi,t = (xi1, ..., x

i
n)

′, we have

zt =

ν
∑

i=1









(xi1)
2 xi1x

i
2 · · · xi1x

i
n

xi2x
i
1 (xi2)

2 · · · xi2x
i
n

: : · · · :
xinx

i
1 xinx

i
2 · · · (xin)

2









.

So

y′zty =

n
∑

j=1

yjy1

ν
∑

i=1

xi1x
i
j +

n
∑

j=1

yjy2

ν
∑

i=1

xi2x
i
j + · · ·+

n
∑

j=1

yjyn

ν
∑

i=1

xinx
i
j

=

ν
∑

i=1

n
∑

j=1

yjy1x
i
1x

i
j +

ν
∑

i=1

n
∑

j=1

yjy2x
i
2x

i
j + · · ·+

ν
∑

i=1

n
∑

j=1

yjynx
i
nx

i
j

=

ν
∑

i=1

n
∑

j=1

(yjx
i
j)

2 +

ν
∑

i=1

n
∑

k,l=1
k 6=l

ykylx
i
kx

i
l

=

ν
∑

i=1









n
∑

j=1

(yjx
i
j)

2 +

n
∑

k,l=1
k 6=l

ykylx
i
kx

i
l








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=

ν
∑

i=1





n
∑

j=1

(yjx
i
j)





2

≥ 0.

Thus, if the latter is zero, we obtain ν equations with n unknowns, which are :






































n
∑

j=1

(yjx
1
j ) = 0

n
∑

j=1

(yjx
2
j ) = 0

:
n
∑

j=1

(yjx
ν
j ) = 0.

Since ν ≥ n, then the unknown yj = 0 for all j.
Thus, the later is strictly positive for all 0 6= y ∈ Rn and it follows that Γt is positive
definite matrix. �

Let X = (Xt)t≥0 be a Levy process. We define the jump process associated with
X by

∆X = (∆Xt ; t ≥ 0) (2.2)

with ∆Xt = Xt −Xt− where Xt− = lim
s→t−

Xs.

Let X = (Xt)t≥0 be a Levy process defined by :

Xt := X0 +

∫ t

0

K(s)ds+

∫ t

0

ϕ(s)dWs +∆Xt (2.3)

with K and ϕ are real processes such that for all t ≥ 0;
∫ t

0
| K(s) | ds < +∞

and
∫ t

0
| ϕ(s) |2 ds < +∞ p.s; ∆Xt defines the jumps process of Xt and Wt is a

Brownian motion. We define Xc
t the part of Xt defined by :

Xc
t := X0 +

∫ t

0

K(s)ds+

∫ t

0

ϕ(s)dWs for all t ≥ 0. (2.4)

The part Xc
t of Xt is called the continuous part of Xt.

Proposition 2.2. If ν ≥ n, then the process zt satisfies the SDE (Stochastic Dif-
ferential Equation) of type :

dzt = (νQ′Q+Φzt + ztΦ
′)dt+

√
zt(dW̃t)

′√Q′Q+
√

Q′QdW̃t

√
zt +

√
zt(dP̃t)

′

+ dP̃t

√
zt + dP̃t(dP̃t)

′ (2.5)

with W̃t is a n×n dimensional stochastic matrix whose components are independent
Brownian motions; Q and Φ are the above matrices ; (P̃t) is a n× n dimensional
stochastic matrix whose components are the compounded Poisson processes.

Proof. Let us dPi,t = YidNt where the Yi are n-dimensional vectors of i.i.d (inde-
pendent and identically distributed) random variables andNt is a Poisson process of

intensity λ > 0. Applying Ito’s formula on the Levy process f(xt) =
ν
∑

i=1

xi,t(xi,t)
′,

we obtain

dzt =

ν
∑

i=1

dxci,t(x
c
i,t)

′ +

ν
∑

i=1

xi,t(dx
c
i,t)

′ +
1

2
× 2

ν
∑

i=1

< dxci,t, (dx
c
i,t)

′ >
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+

[

ν
∑

i=1

(xi,t + Yi)(xi,t + Yi)
′ − xi,t(xi,t)

′

]

dNt

=

ν
∑

i=1

(Φxi,tdt+
√

Q′QdWi,t)(xi,t)
′ +

ν
∑

i=1

xi,t(Φxi,tdt+
√

Q′QdWi,t)
′

+

ν
∑

i=1

√

Q′QdWi,t(dWi,t)
′√Q′Q+ [xi,t(xi,t)

′ + xi,t(Yi)
′ + Yi(xi,t)

′

+Yi(Yi)
′ − xi,t(xi,t)

′]dNt

= (νQ′Q+Φzt + ztΦ
′)dt+

ν
∑

i=1

√

Q′QdWi,t(xi,t)
′ + xi,t(dWi,t)

′
√

Q′Q

+

ν
∑

i=1

[xi,t(Yi)
′ + Yi(xi,t)

′ + Yi(Yi)
′]dNt

= (νQ′Q+Φzt + ztΦ
′)dt+

√

Q′QdW̌tXt + (Xt)
′(dW̌t)

′
√

Q′Q+ (Xt)
′dP̌t

+(dP̌t)
′Xt + (dP̌t)

′dP̌t. (2.6)

Since zt is a positive definite matrix through the Proposition 2.1, then let us as-
sume dP̃t = (dP̌t)

′Xt(
√
zt)

−1 and dW̃t = dW̌tXt(
√
zt)

−1. We have dP̃t(dP̃t)
′ =

(dP̌t)
′Xt(zt)

−1(Xt)
′dP̌t = (dP̌t)

′dP̌t, because Xt(zt)
−1(Xt)

′ = Iν where Iν is the
ν × ν dimensional identity matrix. Indeed, let us look for a ν × ν dimensional real
matrix y such that y = Xt(zt)

−1(Xt)
′.

We have (Xt)
′y = In(Xt)

′ = (Xt)
′. Hence y = Iν .

So, (2.6) = (νQ′Q+Φzt+ztΦ
′)dt+

√
Q′QdW̃t

√
zt+

√
zt(dW̃t)

′√Q′Q+
√
zt(dP̃t)

′+

dP̃t
√
zt + dP̃t(dP̃t)

′. �

In the following sections, the stochastic volatility of the model Γt is a solution
of the SDE defined by (2.5).

2.2. Dynamic of asset return and Correlation. The dynamic of asset return
represented in (1.3) is based on the model Gourrieroux and Suffana (see the ref-
erence [20]) by introducing the jumps process of volatility ψt. Producing ψt with
the vector ϕ ∈ Rn, the yield jumps according to its volatility. In this case, ϕ is the
frequency and the direction of the yield jumps.
On the continuous part, the stochastic process Zt defined in (1.3) is allow us to get
the asymmetric correlation between the yield and its volatility.
We will see later the conditions on the parameters to obtain these asymmetric
correlations.

3. Characteristic functions of the model

In this section, we try to give the explicit expressions of characteristic functions
yield and its volatility.
Let us recall the Feynmann-Kac argument following (see the reference [10]):
let X = (Xt)t≥0 be a Levy process solution of the SDE :

dXt = b(Xt)dt+ σ(Xt)dBt +G(Xt)dNt (3.1)
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where the functions b, σ and G are measurable and Nt is a Poisson process of

intensity λ > 0. The solution of F (h,Xt) = E{e
∫

t+h

t
g(Xv)dvf(Xt+h)/Xt} for all

t, h ≥ 0 where f, g ∈ C2 is determined by LF (h,Xt) = g(Xt)F (h,Xt) with L is the
operator of infinitesimal generator defined by:

LF (h,Xt) =< b(Xt),
∂F (h,Xt)

∂Xt

> +
1

2
tr

[

σ(Xt)σ
′(Xt)

∂2F (h,Xt)

∂X2
t

]

− ∂F (h,Xt)

∂h

+ λE {F (h,Xt− +G(Xt−))− F (h,Xt−)/Xt} (3.2)

with the boundary condition F (h,Xt+h) = f(Xt+h).

3.1. Characteristic function of asset returns. When there exist a no-arbitrage
opportunity in the market, the model checks:














d logSt = (r1̌ − 1
2vec[tr(eiiΓt)])dt +

√
ΓtdZt + dψtϕ

dΓt = (νQ′Q+ΦΓt + ΓtΦ
′)dt+

√
ΓtdW̃t

√
Q′Q+

√
Q′Q(dW̃t)

′√Γt + dψt

dZt =
√
1− ρ′ρdBt + dW̃tρ

dψt =
√
ΓtdP̃t + (dP̃t)

′√Γt + (dP̃t)(dP̃t)
′

(3.3)
where

• 1̌ is a n-dimensional vector whose components are equal to 1;
• If a1, ..., an ∈ R, we define vec(ai) = (a1, ..., an)

′ which is a vector in Rn;
• eii is the n × n dimensional matrix defined by eii = (δijk)j,k=1...n where

δijk =

{

1 if (j, k) = (i, i)
0 otherwise

.

Let us dP̃t = JdNt with J = (Jlk)1≤l,k≤n where Jlk are the i.i.d normal random
variables with Jlk  N(m,σ2).
Let γ be a vector in Rn. The characteristic function of logSt+h given logSt and Γt

is defined by :

ΨlogSt
(γ, h) = E{e(ςγ)′ logSt+h/logSt,Γt} where t, h ≥ 0 and ς2 = −1. (3.4)

Using the Feynmann-Kac argument to the model and assuming g = 0 and f =
ΨlogSt

, we have
∂ΨlogS

t−
(γ, h)

∂h
= LlogS,ΓΨlogS

t−
(γ, h) (3.5)

where t, h ≥ 0; LlogS,Γ is the infinitesimal generator of the joint (logSt,Γt) defined
by :

Proposition 3.1.

LlogS,Γ = tr

[(

νQ′Q+
Φ +Φ′

2
Γt− + Γt−

Φ+ Φ′

2

)

D + 2Γt−DQ
′QD

]

+∇Y

(

r1̌− 1

2
vec[tr(eiiΓt−)]

)

+
1

2
∇Y Γt−∇′

Y

+tr(D
√

Q′Qρ∇Y Γt− + Γt−∇′
Y ρ

′
√

Q′QD)

+λΨlogS
t−

× E

{

e(ςγ)
′(2
√

Γ
t−

Jϕ+JJ′ϕ) − 1/logSt,Γt

}

, with (3.6)

• D = (Dij)1≤i,j≤n where Dij =
∂

∂Γij,t
and Γij,t, 1 ≤ i, j ≤ n are the compo-

nents of the volatility matrix Γt;
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• ∇Y =
(

∂
∂Y1

, · · · , ∂
∂Yn

)′
where Yi = logSi,t is the yield of the i-th underlying

in the basket, i = 1, ..., n.

Proof. Let t, h ≥ 0. The operator LlogS,Γ can be broken down into the following 4
components :

LlogS,ΓΨlogS
t−

= L(log S)cΨlogS
t−

+L(Γ)cΨlogS
t−

+L<(logS)c,(Γ)c>ΨlogS
t−

+Ljumps

(3.7)
with

• L(Γ)c , L(log S)c and L<(log S)c,(Γ)c> are the infinitesimal generators which
are demonstrated by Da Fonseca (2007)(see the reference [12]) defined by :

L(logS)c = ∇Y

(

r1̌ − 1

2
vec[tr(eiiΓt−)]

)

+
1

2
∇Y Γt−∇′

Y ; (3.8)

L(Γ)c = tr [(νQ′Q+ΦΓt− + Γt−Φ
′)D + 2Γt−DQ

′QD] ; (3.9)

L<(logS)c,(Γ)c> = tr(D
√

Q′Qρ∇Y Γt− + Γt−∇′
Y ρ

′√Q′QD); (3.10)

• Ljumps is the infinitesimal generator of the jumps defined by :

Ljumps = λE {Ψ(logSt+h +H)−Ψ(logSt+h)/logSt,Γt}

= λΨlogS
t−

× E

{

e(ςγ)
′H − 1/logSt,Γt

}

(3.11)

where H = 2
√
Γt−Jϕ+ JJ ′ϕ.

�

As the yield logSt is affine, then we have

ΨlogSt
(γ, h) = etr(A(h)Γt)+B(h) logSt+C(h) (3.12)

with A(h), B(h) and C(h) are deterministic functions expressed by:

Proposition 3.2.

B(h) = (ςγ)′,

A(h) = A22(h)
−1A21(h),

C(h) = tr
[

r1̌h(ςγ)′ − ν

2
(logA22(h) + hΥ)

]

+

λh
[

etr[ωµ−1( 1
2
(m1̃)2+

√
Γt(m1̃)+ 1

2
σ2Γtω)−n

2
logµ] − 1

]

.

where 1̃ is a n× n dimensional matrix whose components are equal to 1 and

ω = ϕ(ςγ)′ + (ςγ)ϕ′;

µ = In − σ2w;

Υ =
(Φ + (ςγ)ρ′

√
Q′Q) + (Φ + (ςγ)ρ′

√
Q′Q)′

2
;

[

A11(h) A12(h)
A21(h) A22(h)

]

= exp



h





Υ −2Q′Q

1
2 ((ςγ)(ςγ)

′ −
n
∑

j=1

(ςγj)ejj) −Υ







 .
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Lemma 3.3. For any complex matrix Ω = (wij) such that the eigenvalues are
nonzero and ϑ ∈ Cn, we have

∫

Rn

e−x′Ωx+ϑ′xdx =
√
π
n
e

1
4
ϑ′Ω−1ϑ− 1

2
tr(log Ω). (3.13)

Proof. The left integral is equal to

e
1
4
ϑ′Ω−1ϑ

∫

Rn

e−(x− 1
2
Ω−1ϑ)′Ω(x− 1

2
Ω−1ϑ)dx = e

1
4
ϑ′Ω−1ϑ

∫

Rn

e−y′Ωydy, by imposing

y = x− 1

2
Ω−1ϑ. (3.14)

We know that the Gaussian integral is given by
∫

Rn e
−y′ydy =

√
π
n
and thus if

a = (ai) is a complex vector where the ai are non-zero, we have
∫

Rn e
−

n
∑

i=1

aiy
2
i

dy =
√

πn

a1...an
through the change of variable by doing the xi =

√
aiyi. Since any

complex matrix is split (see the definition in the reference [30]). Now, let be a
complex matrix Ω = PDP−1 where D = diag(di) is the diagonal complex matrix
where the di are non-zero and P its transition complex matrix. We have so

∫

Rn

e−y′Ωydy =

∫

Rn

e−y′Dydy

=

√

πn

d1...dn

=
√
πne

−
n
∑

i=1

log
√
di

=
√
πne−

1
2
tr(log Ω).

Hence 3.14 = e
1
4
ϑ′Ω−1ϑ

√
πne−

1
2
tr(log Ω). �

Proof of Proposition 3.2. Let t, h ≥ 0. We have
∂Ψlog S

t−
(γ,h)

∂h
=
[

tr(∂A(h)
∂h

Γt−) +
∂B(h)
∂h

logSt− + ∂C(h)
∂h

]

ΨlogS
t−
(γ, h).

Then, from the expression (3.5), we have

tr(
∂A(h)

∂h
Γt−) +

∂B(h)

∂h
log St− +

∂C(h)

∂h

= B(h)((r1) − 1

2
vec[tr(eiiΓt−)]) +

1

2
B(h)ΓB(h)′+

tr

[(

νQ′Q+ (
Φ + Φ′

2
)Γt− + Γt−(

Φ + Φ′

2
)

)

A(h) + 2Γt−A(h)Q
′QA(h)

]

+tr[A(h)
√

Q′QρB(h)Γt− + Γt−B(h)′ρ′
√

Q′QA(h)]

+λE
[

e(ςγ)
′(2
√

Γ
t−

Jϕ+JJ′ϕ) − 1/logSt,Γt

]

(3.15)

with the initial conditions A(0) = 0, B(0) = ςγ′ and C(0) = 0.

Let us now E

[

e(ςγ)
′(2
√

Γ
t−

Jϕ+JJ′ϕ)/logSt,Γt

]

.

Let us γ = (γ1, ..., γn)
′; ϕ = (ϕ1, ..., ϕn)

′;
√
Γt = (σij,t)1≤i,j≤n which is symmetrical;

vec(Jk) = (J1k, · · · , Jnk)′ and vec(σk,t) = (σ1k,t, · · · , σnk,t)′.
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So (ςγ)′JJ ′ϕ =
n
∑

l,j,k=1

(ςγj)JjkJlkϕl =
n
∑

k=1

1
2vec(Jk)

′(ϕ(ςγ)′ + (ςγ)ϕ′)vec(Jk) and

(ςγ)′J
√
Γtϕ =

n
∑

l,j,k=1

(ςγj)Jjkσlk,tϕl =
n
∑

k=1

1
2vec(σk,t)

′(ϕ(ςγ)′ + (ςγ)ϕ′)vec(Jk).

Let us also ω = ϕ(ςγ)′ + (ςγ)ϕ′ and µ = In − σ2w.
As vec(Jk) Nn((m1̌), σ2In) , we have

E

{

e(ςγ)
′(2
√

Γ
t−

Jϕ+JJ′ϕ)/logSt,Γt

}

= E

{

e

n
∑

k=1

( 1
2
vec(Jk))

′ωvec(Jk)+
n
∑

k=1

vec(σk,t)
′ωvec(Jk)

/logSt,Γt

}

=

n
∏

k=1

E

{

e
1
2
vec(Jk)

′ωvec(Jk)+vec(σk,t)
′ωvec(Jk)/logSt,Γt

}

because Jlk i.i.d

=

n
∏

k=1

e
1
2
(m1̌)′ω(m1̌)+(vec(σk,t))

′ω(m1̌)
E

{

e
1
2
ξ′σ2ωξ+[(m1̌)′ωσ+((vec(σk,t))

′ωσ)]ξ/logSt,Γt

}

where ξ is a Gaussian random variable in R
n of density

1√
2
n√

π
n exp(−1

2
ε′ε)

=

n
∏

k=1

e
1
2
(m1̌)′ω(m1̌)+(vec(σk,t))

′ω(m1̌)

∫

Rn

e−
1
2
ε′µε+[(m1)′ωσ+(vec(σk))

′ωσ]ε
√
2
n√

π
n dε (3.16)

where ε = (ε1, ..., εn)
′ ∈ Rn and dε = dε1...dεn.

As ‖ σ2ω ‖< 1, so using the Lemma 3.3, we have

(3.16) =

n
∏

k=1

e
1
2
(m1̌)′ω(m1̌)+(vec(σk))

′ω(m1̌)− 1
2
tr log µ

e(
1
2
(m1̌)′ωσ+ 1

2
(vec(σk))

′ωσ)(2µ−1)( 1
2
σω(m1̌)+ 1

2
σωvec(σk)). (3.17)

Well

1

2
(m1̌)′ω(m1̌) +

1

2
(m1̌)′ωσµ−1σω(m1̌) =

1

2
(m1̌)′ω

[

In + σ2ωµ−1
]

(m1̌)

=
1

2
(m1̌)′ωµ−1(m1̌).

After some computations, we have
(vec(σk))

′ω(m1̌) + vec(σk)
′ωσµ−1σω(m1̌) = vec(σk)

′ωµ−1(m1̌).
Thus

(3.17) =

n
∏

k=1

e
1
2
(m1̌)′ωµ−1(m1̌)+vec(σk)

′ωµ−1(m1̌)+ 1
2
vec(σk)

′ωσµ−1σωvec(σk)− 1
2
tr logµ

= e

n
∑

k=1

1
2
(m1̌)′ωµ−1(m1̌)+vec(σk)

′ωµ−1(m1̌)+ 1
2
vec(σk)

′ωσµ−1σωvec(σk)− 1
2
tr logµ

= etr[ωµ−1( 1
2
(m1̃)2+

√
Γt(m1̃)+ 1

2
σ2Γtω)]−n

2
tr logµ.
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So

(3.15) = B(h)

(

(r1̌)− 1

2
vec[tr(eiiΓt−)]

)

+
1

2
B(h)ΓB(h)′+

tr

[(

νQ′Q+
Φ+Φ′

2
Γt− + Γt−

Φ + Φ′

2

)

A(h) + 2Γt−A(h)Q
′QA(h)

]

+tr
[

A(h)
√

Q′QρB(h)Γt− + Γt−B(h)′ρ′
√

Q′QA(h)
]

+λ
[

etr[ωµ−1( 1
2
(m1̃)2+

√
Γt(m1̃)+ 1

2
σ2Γtω)]−n

2
tr log µ − 1

]

.

By identifying the coefficient of logSt− , we have ∂B(h)
∂h

= 0 which follows that
B(h) = B(0) = (ςγ)′ for all h ≥ 0.
Identifying the coefficient of Γt− , we have

∂A(h)

∂h
= −1

2

n
∑

i=1

(ςγi)eii +
1

2
(ςγ)(ςγ)′ +

Φ+Φ′

2
A(h) +A(h)

Φ + Φ′

2
+ 2A(h)

Q′QA(h) +A(h)
√

Q′Qρ(ςγ)′ + (ςγ)ρ′
√

Q′QA(h)

= −1

2

n
∑

i=1

(ςγi)eii +
1

2
(ςγ)(ςγ)′ +

(

Φ+ Φ′

2
+ (ςγ)ρ′

√

Q′Q

)

A(h)+

A(h)

(

Φ + Φ′

2
+
√

Q′Qρ(ςγ)′
)

+ 2A(h)Q′QA(h)

= −1

2

n
∑

i=1

ςγieii +
1

2
(ςγ)(ςγ)′ +ΥA(h) +A(h)Υ + 2A(h)Q′QA(h)

(3.18)

in the trace operator where Υ = (Φ+(ςγ)ρ′√Q′Q)+(Φ+(ςγ)ρ′√Q′Q)′

2 .
Let us

A(h) = F (h)−1G(h) with F (h) ∈ GLn(R) and G(h) ∈ Mn(R). (3.19)

We have 0 = A(0) = F (0)−1G(0). In this case, we take G(0) = 0 and F (0) = In.

Well, we have ∂[F (h)A(h)]
∂h

= ∂F (h)
∂h

A(h) + F (h)∂A(h)
∂h

. Then, we have

∂G(h)

∂h
− ∂F (h)

∂h
A(h) = F (h)

∂A(h)

∂h

= F (h)

(

−1

2

n
∑

i=1

(ςγi)eii +
1

2
(ςγ)(ςγ)′

)

+G(h)Υ

+F (h)ΥA(h) +G(h)(2Q′Q)A(h),

through (3.18) and (3.19).

Thus






∂G(h)
∂h

= G(h)Υ + F (h)

(

− 1
2

n
∑

i=1

(ςγi)eii +
1
2 (ςγ)(ςγ)

′
)

∂F (h)
∂h

= −2G(h)Q′Q− F (h)Υ.
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So

∂
[

G(h) F (h)
]

∂h
=
[

G(h) F (h)
]





Υ −2Q′Q

− 1
2

n
∑

i=1

(ςγi)eii +
1
2 (ςγ)(ςγ)

′ −Υ



 .

Then

[

G(h) F (h)
]

=
[

G(0) F (0)
]

exp



h





Υ −2Q′Q

− 1
2

n
∑

i=1

(ςγi)eii +
1
2 (ςγ)(ςγ)

′ −Υ







.

Let us

[

A11(h) A12(h)
A21(h) A22(h)

]

= exp



h





Υ −2Q′Q

− 1
2

n
∑

i=1

(ςγi)eii +
1
2 (ςγ)(ςγ)

′ −Υ







.

We have G(h) = G(0)A11(h) + F (0)A21(h) and F (h) = G(0)A12(h) + F (0)A22(h).
As A(h) = F (h)−1G(h), we get

A(h) = (G(0)A12(h) + F (0)A22(h))
−1(G(0)A11(h) + F (0)A21(h))

.
Using the initial conditions G(0) = 0 and F (0) = In, we have

A(h) = (A22(h))
−1A21(h). (3.20)

And finally, by identification

∂C(h)

∂h
= tr[(r1̌)γ′ + νQ′QA(h)]+

λ
[

etr[ωµ−1( 1
2
(m1̃)2+

√
Γt(m1̃)+ 1

2
σ2Γtω)−n

2
logµ] − 1

]

(3.21)

As ∂F (h)
∂h

= −2G(h)Q′Q − F (h)Υ, we have G(h) = − 1
2

[

∂F (h)
∂h

+ F (h)Υ
]

(Q′Q)−1.

Thus

tr(νQ′QA(h)) = tr(νQ′QF (h)−1G(h))

= tr

[−ν
2
F (h)−1 ∂F (h)

∂h
− ν

2
Υ

]

.

Then

(3.21) = tr

[

(r1̌)γ′ +
−ν
2
F (h)−1 ∂F (h)

∂h
− ν

2
Υ

]

+

λ
[

etr[ωµ−1( 1
2
(m1̃)2+

√
Γt(m1̃)+ 1

2
σ2Γtω)−n

2
log µ] − 1

]

.

And thus

C(h) = tr

[

(r1̌)hγ′ +
−ν
2

(logF (h)− logF (0))− νh

2
Υ

]

+λh
[

etr[ωµ−1( 1
2
(m1̃)2+

√
Γt(m1̃)+ 1

2
σ2Γtω)−n

2
logµ] − 1

]

= tr
[

(r1̌)hγ′ − ν

2
(logA22(h) + hΥ)

]

+

λh
[

etr[ωµ−1( 1
2
(m1̃)2+

√
Γt(m1̃)+ 1

2
σ2Γtω)−n

2
logµ] − 1

]

.

�
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3.2. Characteristic function of Volatility. Let Γt be a solution of the SDE
(2.5) with ν ≥ n and Λ be a n×n dimensional matrix. The characteristic function
of Γt+h given Γt is defined by :

ΨΓt
(Λ, h) = E

{

etr((ςΛ)Γt+h)/Γt

}

where t, h ≥ 0. (3.22)

Since Γt is an affine function then

ΨΓ(Λ, h) = etr(B(h)Γt)+c(h) (3.23)

with B(h) and c(h) are deterministic functions expressed by :

Proposition 3.4.

B(h) = ((ςΛ)B12(h) +B22(h))
−1((ςΛ)B11(h) +B21(h)), (3.24)

c(h) = tr

[

−ν
2

(

log((ςΛ)B12(h) +B22(h)) + h
Φ+ Φ′

2

)]

− λh+

λ

∫ h

0

etr[B(u)(In−2σ2B(u))−1((m1̃)2+2
√

Γ
t−

(m1̃)+2Γ
t−

B(u)σ2)−n
2
log ∆(u)]du

(3.25)

with 1̃ is a n × n dimensional matrix whose components are equal to 1, ∆(u) =
In − 2σ2B(u) and

[

B11(h) B12(h)
B21(h) B22(h)

]

= exp

(

h

[

Φ+Φ′

2 −2Q′Q

0 −Φ+Φ′

2

])

. (3.26)

Proof. Let be t, h ≥ 0.
By using the Feynmann-Kac argument on the SDE of Γt and imposing g = 0 and
f = ΨΓt

, we get

∂ΨΓ
t−
(Λ, h)

∂h
= LΓΨΓ

t−
(Λ, h), with (3.27)

LΓ = tr

[(

νQ′Q +
Φ +Φ′

2
Γt− + Γt−

Φ+ Φ′

2

)

D + 2Γt−DQ
′QD

]

+λΨΓ
t−
E

{

etr(B(h)(2
√

Γ
t−

J+JJ′) − 1/Γt

}

where D = (Dij)ij and Dij =
∂

∂Γij,t
. We have also

∂Ψlog S
t−

(γ,h)

∂h
=
[

tr
(

∂B(h)
∂h

Γt−

)

+ ∂c(h)
∂h

]

ΨΓ
t−
(Λ, h).

So, from the expression (3.27), we have

tr

(

∂B(h)

∂h
Γt−

)

+
∂c(h)

∂h

= tr

[(

νQQ′ +
Φ+Φ′

2
Γt− + Γt−

Φ+ Φ′

2

)

B(h) + 2Γt−B(h)Q′QB(h)

]

+λE
{

etr[B(h)(2
√

Γ
t−

J+JJ′)] − 1/Γt

}

(3.28)

with the initial conditions B(0) = ςΛ and c(0) = 0.

Let’s first determine E

{

etr[B(h)(2
√

Γ
t−

J+JJ′)]/Γt

}

:
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using J = (Jlk)lk where Jlk are the i.i.d normal random variables with Jlk  
N(m,σ2) and

√
Γt = (σij)ij is a symmetrical matrix, we have

tr(B(h)JJ ′) =

n
∑

l,k,p=1

JlpBlk(h)Jkp

=

n
∑

p=1

(vec(Jp))
′B(h)vec(Jp)

and

tr(B(h)
√
ΓJ =

n
∑

l,k,p=1

Blk(h)σlpJpk

=

n
∑

p=1

(vec(σp))
′B(h)vec(Jp).

Hence, we have

E

[

etr[B(h)(2
√

Γ
t−

J+JJ′)]/Γt

]

= E

[

e

n
∑

p=1

(vec(Jp))
′B(h)vec(Jp)+2(vec(σp))

′B(h)vec(Jp)

/Γt

]

=
n
∏

p=1

E

[

evec(Jp)
′B(h)vec(Jp)+2(vec(σp))

′B(h)vec(Jp)/Γt

]

because (Jlk) i.i.d

=
n
∏

k=1

e(m1̌)′B(h)m1̌+2vec(σk)
′B(h)m1̌

E

[

eξ
′σ2B(h)ξ+(2(m1̌)′B(h)σ)+2vec(σk)

′B(h)σ)ξ/Γt

]

=

n
∏

k=1

e(m1̌)′B(h)(m1̌)+2vec(σk)
′B(h)(m1̌)

∫

e−ε′ 1
2
∆(h)ε+(2(m1̌)′B(h)σ+2vec(σk)

′B(h)σ)ε
√
2
n√

π
n dε

=

n
∏

k=1

e((m1̌)′B(h)σ+(vec(σk))
′B(h)σ)(2∆(h)−1)(σB(h)(m1̌)+σB(h)vec(σk))

e(m1̌)′B(h)m1̌+2(vec(σk))
′B(h)(m1̌)− 1

2
log∆(h)through the Lemma 3.3 where

∆(h) = In − 2σ2B(h)

=
n
∏

k=1

etr[B(h)∆(h)−1[(m1̌)(m1̌)′+2(m1̌)(vec(σk))
′+2σ2B(h)vec(σk)(vec(σk))

′]− 1
2
log∆(h)]

= etr[B(h)∆(h)−1((m1̃)2+2
√

Γ
t−

(m1̃)+2Γ
t−

B(h)σ2)−n
2
log∆(h)].

Thus

(3.28) = tr

[(

νQQ′ +
Φ +Φ′

2
Γt− + Γt−

Φ+ Φ′

2

)

B(h) + 2Γt−B(h)Q′QB(h)

]

+

λ
[

etr[B(h)∆(h)−1((m1̃)2+2
√

Γ
t−

(m1̃)+2Γ
t−

B(h)σ2)−n
2
log∆(h)] − 1

]

.

Identifying the coefficient of Γt− , we get

∂B(h)

∂h
= (

Φ + Φ′

2
)B(h) +B(h)(

Φ + Φ′

2
) + 2B(h)Q′QB(h).
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Let us B(h) = F (h)−1G(h) with F (h) ∈ GLn(R) and G(h) ∈ Mn(R). We have
ςΛ = B(0) = F (0)−1G(0). In this case, take G(0) = ςΛ and F (0) = In. In addition,

we have ∂[F (h)B(h)]
∂h

= ∂F (h)
∂h

B(h) + F (h)∂B(h)
∂h

. Then,

∂G(h)

∂h
− ∂F (h)

∂h
B(h) = F (h)

∂B(h)

∂h

= F (h)

[

Φ + Φ′

2
B(h) +B(h)

Φ + Φ′

2
+ 2B(h)Q′QB(h)

]

= G(h)
Φ + Φ′

2
+ F (h)

Φ + Φ′

2
B(h) + 2G(h)Q′QB(h).

Hence,

{

∂G(h)
∂h

= G(h)(Φ+Φ′

2 )
∂F (h)
∂h

= −2G(h)Q′Q− F (h)(Φ+Φ′

2 ).

Writing in matrix form, we have
∂
[

G(h) F (h)
]

∂h
=
[

G(h) F (h)
]

[

Φ+Φ′

2 −2Q′Q

0 −Φ+Φ′

2

]

.

So, the solution is
[

G(h) F (h)
]

=
[

G(0) F (0)
]

exp

(

h

[

Φ+Φ′

2 −2Q′Q

0 −Φ+Φ′

2

])

.

Let us

[

B11(h) B12(h)
B21(h) B22(h)

]

= exp

(

h

[

Φ+Φ′

2 −2Q′Q

0 −Φ+Φ′

2

])

.

We have G(h) = G(0)B11(h) + F (0)B21(h) and F (h) = G(0)B12(h) + F (0)B22(h).
Then, as B(h) = F (h)−1G(h), we have

B(h) = (G(0)B12(h) + F (0)B22(h))
−1(G(0)B11(h) + F (0)B21(h)).

Moreover, as G(0) = ςΛ and F (0) = In, then we have

B(h) = ((ςΛ)B12(h) +B22(h))
−1((ςΛ)B11(h) +B21(h)). (3.29)

Finally, by identification we have

∂c(h)

∂h
= tr[νQQ′B(h)]− λ+

λ
[

etr[B(h)∆(h)−1((m1̃)2+2
√

Γ
t−

(m1̃)+2Γ
t−

B(h)σ2)−n
2
log∆(h)]

]

(3.30)

with c(0) = 0. Since ∂F (h)
∂h

= −2G(h)Q′Q− F (h)(Φ+Φ′

2 ), we get

G(h) = −1

2

[

∂F (h)

∂h
+ F (h)(

Φ + Φ′

2
)

]

(Q′Q)−1.

Thus, tr(νQ′QB(h)) = tr
[

(νQQ′F (h)−1G(h)
]

.= tr
[

−ν
2 F (h)

−1 ∂F (h)
∂h

− ν
2 (

Φ+Φ′

2 )
]

.

So,

(3.30) = tr

[−ν
2
F (h)−1 ∂F (h)

∂h
− ν

2

Φ + Φ′

2

]

− λ

+λetr[B(h)∆(h)−1((m1̃)2+2
√

Γ
t−

(m1̃)+2Γ
t−

B(h)σ2)−n
2
log ∆(h)].
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And thus

c(h) = tr

[−ν
2

(logF (h)− logF (0))− νh

2

Φ + Φ′

2

]

− λh

+λ

∫ h

0

etr[B(u)∆(u)−1((m1̃)2+2
√

Γ
t−

(m1̃)+2Γ
t−

B(u)σ2)−n
2
log∆(u)]du

= tr

[

−ν
2

(

log((ςΛ)B12(h) +B22(h)) + h
Φ+ Φ′

2

)]

− λh

+λ

∫ h

0

etr[B(u)∆(u)−1((m1̃)2+2
√

Γ
t−

(m1̃)+2Γ
t−

B(u)σ2)−n
2
log∆(u)]du

where ∆(u) = In − 2σ2B(u) for all u ∈ [0;h].

�

Theorem 3.5. Let h ≥ 0. If Φ is an invertible matrix and
[

In − 2(ςΛ)Q′Q(Φ + Φ′)−1(e(Φ+Φ′)h − In)
]−1

exists in the trace operator, we have

B(h) =
[

In − 2(ςΛ)Q′Q(Φ + Φ′)−1(e(Φ+Φ′)h − In)
]−1

(ςΛ)e(Φ+Φ′)h, (3.31)

[

B11(h) B12(h)
B21(h) B22(h)

]

=

[

e(
Φ+Φ′

2
)h −2(Φ + Φ′)−1(e(

Φ+Φ′

2
)h − e−(Φ+Φ′

2
)h)Q′Q

0 e−(Φ+Φ′

2
)h

]

.

(3.32)

Proof. Let be h ≥ 0 and T =

[

Φ+Φ′

2 −2Q′Q

0 −Φ+Φ′

2

]

, T s = (T
(s)
ij )ij , s ∈ N.

In the trace operator, we have T
(0)
ij = In si i = j and 0 otherwise; T

(1)
11 = Φ+Φ′

2 ;

T
(1)
12 = −2Q′Q; T

(1)
21 = 0; T

(1)
22 = −(Φ+Φ′

2 ); T
(2)
11 = (Φ+Φ′

2 )2; T
(2)
12 = −2(Φ+Φ′

2 )Q′Q+

2Q′Q(Φ+Φ′

2 ) = 0 ; T
(2)
21 = 0; T

(2)
22 = (Φ+Φ′

2 )2.
Now, let us consider p ≥ 1, in the trace operator, reasoning by recurrence, we have

T
2(p+1)
11 = T

(2)
11 T

(2p)
11 + T

(2)
12 T

(2p)
21 = (Φ+Φ′

2 )2(p+1); T
2(p+1)
12 = T

(2)
11 T

(2p)
12 + T

(2)
12 T

(2p)
22 =

0; T
2(p+1)
21 = T

(2)
21 T

(2p)
11 + T

(2)
22 T

(2p)
21 = 0; T

2(p+1)
22 = T

(2)
21 T

(2p)
12 + T

(2)
22 T

(2p)
22 =

(Φ+Φ′

2 )2(p+1).

Then using the values T
(1)
ij and T

(2p)
ij above, we have, for all p ≥ 1

T 2p+1
11 = T

(1)
11 T

(2p)
11 + T

(1)
12 T

(2p)
21 = (Φ+Φ′

2 )2p+1; T 2p+1
12 = T

(1)
11 T

(2p)
12 + T

(1)
12 T

(2p)
22 =

−2
(

Φ+Φ′

2

)2p

Q′Q; T 2p+1
21 = T

(1)
21 T

(2p)
11 + T

(1)
22 T

(2p)
21 = 0 ; T 2p+1

22 = T
(1)
21 T

(2p)
12 +

T
(1)
22 T

(2p)
22 = −(Φ+Φ′

2 )2p+1.
Well, we have
[

B11(h) B12(h)
B21(h) B22(h)

]

= ehT

=

+∞
∑

s=0

(hT )s

s!

=

+∞
∑

p=0

(hT )(2p)

(2p)!
+

+∞
∑

p=0

(hT )(2p+1)

(2p+ 1)!
.
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=

[

e(
Φ+Φ′

2
)h −(Φ+Φ′

2 )−1(e(
Φ+Φ′

2
)h − e−(Φ+Φ′

2
)h)Q′Q

0 e−(Φ+Φ′

2
)h

]

.

The value of B(h) is obtained through the expression 3.29 and the Bij(h) above. �

Remark. The values B(h) and Bij(h) are not their true values but when they are
in the trace operator, they are reduced to these values. Fortunately, we can use
these values because at the beginning they are defined in the trace operator (see
characteristic function of volatility).

4. Characteristic study of the model

4.1. Stationarity of Γt.

Theorem 4.1. Let h ≥ 0. If the following conditions are satisfied :

(i) ν ≥ n,
(ii) Φ is a negative definite matrix,
(iii) λ is a parameter in function of h such as λh converges when h tends to

+∞ or
(iv) m and σ are the parameters in function of h such as mh and σh converge

when h tends to +∞.

So the conditional process Γt+h given Γt is stationary and converges to a Wishart
distribution.

Let be A ∈ Mn(R).

Theorem 4.2. Let f be an endomorphism of a vector space E. If f is split then
there exists a endomorphism single joint (u, v) such as f = u+v; u is diagonalizable
and v is nilpotent; u commute with v.

Proof. see the reference [30]. �

Corollary 4.3. If A is a negative definite matrix and if it is triangularizable then
it is invertible and eAh tends to 0 when h tends to infinity.

Proof. It is obvious that if A is a triangularizable and negative definite matrix then
A is invertible. Moreover, under these conditions, eAh tends to 0 when h tends to
infinity. Indeed, A is similar to a triangular matrix T . So we can find a passage
matrix P such as A = PTP−1. Moreover, according to Theorem 4.2, we can find
a diagonal matrix D composed of the eigenvalues of A which are negative non-zero
and a matrix N which is nilpotent and commutes with D such as T = D +N .
Let us assume N is a nilpotent matrix of index p.
So, for all h ≥ 0, we have

eAh = eTh

= e(D+N)h

= eDheNh, through the Campbell-Backer-Haussdorff formula

= eDh

(

In +
Nh

1!
+
N2h2

2!
+ ...+

Np−1hp−1

(p− 1)!

)

−→
h−→+∞

0.
¯

�



WASC STOCHASTIC VOLATILITY JUMP 17

Lemma 4.4. If A is a negative definite matrix then e(A+A′)h tend to 0 when h
tend to the infinite.

Proof. As A is a negative defined matrix, then A′ and A + A′ are also negative.
The result follows so applying the Corollary 4.3. �

Proof of Theorem 4.1. ΨΓ(Λ, h) admits a limit when h tends to infinity through
(3.23) if B(h) and c(h) admit finite limits or tend to −∞. As Φ is a negative
definite matrix then B(h) converges to zero when h tends to infinity through the
Lemma 4.4.
In addition, we see that the characteristic function our model is similar to WASC
model by adding the term :

λ

∫ h

0

etr[B(u)∆(u)−1((m1̃)2+2
√

Γ
t−

(m1̃)+2Γ
t−

B(u)σ2)−n
2
log ∆(u)] − 1du (4.1)

in expression of c(h) in equation (3.24). So, in long term (that is, for h large
enough), we can regularize with λ or m and σ for the expression (4.1) don’t tend
to infinity when h tends to infinity under the condition of stationarity of WASC
model which are Φ is a negative definite matrix. Using the change of variable by
doing u = vh, (4.1) becomes

λh

∫ 1

0

etr[B(vh)∆(vh)−1((m1̃)2+2
√

Γ
t−

(m1̃)+2Γ
t−

B(vh)σ2)−n
2
log∆(vh)] − 1dv. (4.2)

Let us for all v ∈]0, 1[ and h ≥ 0,

g(v, h) =
[

etr[B(vh)∆(vh)−1((m1̃)2+2
√

Γ
t−

(m1̃)+2Γ
t−

B(vh)σ2)−n
2
log∆(vh)] − 1

]

λh,

G(u) =
g(v,u

v
)

λh
, u ∈]0, 1[. We have G(u) tends to 0 when h tends to +∞. Thus, we

can find T1 < u, we have | G(u) |< 1
2 .

Let firstly λ be a parameter in function of h such as λh converges when h tends to
+∞ where λ̇ the limit of λh when h tends to +∞. Thus, we can find T2 < h, we
have λh < 1

2 + λ̇. Distinguish six cases :
Case 1: 0 ≤ h ≤ 100 and 0 < v < 1. We have | g(v, h) |< A1 where A1 =
sup

0<v<1
0≤h≤100

g(v, h).

Case 2: 100 < u = vh ≤ T1 ≤ h and 0 < v < 1. We have | g(v, h) |< A2 where

A2 = Sup
100≤u≤T1

| G(u) | max
T1≤h≤T2

(λ̇ + 1
2 , λh).

Case 3: 100 < T1 < u < h and 0 < v < 1. We have | g(v, h) |< A3 where

A3 = 1
2 max
T1≤h≤T2

(λ̇+ 1
2 , λh).

Case 4: 100 < u < h < T1 and 0 < v < 1. We have | g(v, h) |< A4 where
A4 = Sup

100≤u≤T1

| G(u) | max
100≤h≤T1

(λh) .

Case 5: 0 < u < 100 < T1 < h and 0 < v < 1. We have | g(v, h) |< A5 where

A5 = Sup
0≤u≤100

| G(u) | max
T1≤h≤T2

(λ̇+ 1
2 , λh).

Case 6: 0 < u < 100 < h < T1 and 0 < v < 1. We have | g(v, h) |< A6 where
A6 = Sup

0≤u≤100
| G(u) | max

100≤h≤T1

(λh).

Hence, | g(v, h) |< A where A = max
i=1,2,3,4,5,6

(Ai) for all v ∈]0, 1[ and h ≥ 0.

In addition, g(v, h) tends to 0 when h tends to +∞ for all v ∈]0, 1[. So, by using
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the dominated convergence of Lebesgue theorem (see the reference [7]), (4.2) tends
to 0 when h tends to +∞. And thus, ΨΓt

(Λ, h) tends to e−
n
2
tr log(In−2Ω1(ςΛ)) which

is a characteristic function of Wishart distribution with vec(Ω1) = −(In ⊗Φ+Φ⊗
In)

−1 ◦ vec(Q′Q) (see the reference [13]).
Now, if m and σ are the parameters in function of h such as mh and σh converge
when h tends to +∞. Let ṁ be the limit of mh when h tends to +∞. We
have sup

0≤u≤h

(G(u)λh) tends to 0 when h tends to +∞. So, we can find T < h,

| sup
0≤u≤h

(G(u)λh) |< 1
2 .

Distinguish also six cases :
Case 1: 0 ≤ h ≤ 100 and 0 < v < 1. We have | g(v, h) |< A1.
Case 2: 100 < u = vh ≤ T ≤ h and 0 < v < 1. We have | g(v, h) |<
1
2 + sup

0≤u

tr(2B(u)ṁ1̃
√
Γt).

Case 3: 100 < T < u < h and 0 < v < 1. We have | g(v, h) |< 1
2 .

Case 4: 100 < u < h < T and 0 < v < 1. We have | g(v, h) |< B1 where
B1 = Sup

100≤u≤T

| G(u) | max
100≤h≤T

(λh) .

Case 5: 0 < u < 100 < T < h and 0 < v < 1. We have | g(v, h) |< 1
2 .

Case 6: 0 < u < 100 < h < T1 and 0 < v < 1. We have | g(v, h) |< B2 where
B2 = Sup

0≤u≤100
| G(u) | max

100≤h≤T
(λh).

Hence, | g(v, h) |< B where B = max
i=1,2

(A1, Bi,
1
2 ) for all v ∈]0, 1[ and h ≥ 0.

Since g(v, h) tends to 0 when h tends to +∞ for all v ∈]0, 1[. So using the dominated
convergence of Lebesgue theorem, (4.2) tends to 0 when h tends to +∞ and thus
ΨΓt

(Λ, h) tends also to e−
n
2
tr log(In−2Ω1(ςΛ)). �

Theorem 4.5. Let Γ∞ be the limit of the stationary distribution of Γt. Then, Γ∞
is the solution of :

Γ∞Φ′ +ΦΓ∞ + λ(m1̃)
√

Γ∞ + λ
√

Γ∞(m1̃) = −νQ′Q− λnσ2In − nλ(m1̃)2. (4.3)

Proof. Using the following SDE of Γt :
dΓt = (νQ′Q + ΦΓt + ΓtΦ

′dt +
√
ΓtdWt

√
Q′Q +

√
Q′Q(dWt)

′√Γt +
√
ΓtdPt +

(dP )′
√
Γt + dPt(dPt)

′ with

Pt =
Nt
∑

j=1

Jj where Jj = (Jj,kl)kl is a n× n dimensional matrix such as Jj,kl for all

j, k and l are the i.i.d normal random variables with Jj,kl  N(m,σ2), we have for
a very small positive h,
Γt+h − Γt = (νQ′Q + ΓtΦ

′ + ΦΓt)h +
√
Γt(Wt+h − Wt)

′√Q′Q +
√
Q′Q(Wt+h −

Wt)
√
Γt +

√
Γt(Pt+h − Pt) + (Pt+h − Pt)

′√Γt + (Pt+h − Pt)(Pt+h − Pt)
′.

Moving to conditional expectation, we have
E{Γt+h − Γt/Γt} = (νQ′Q + ΓtΦ

′ + ΦΓt)h +
√
Γt(E{Wt+h − Wt/Γt})′

√
Q′Q +√

Q′QE{Wt+h −Wt/Γt}
√
Γt + (E{Pt+h − Pt/Γt})′

√
Γt +

√
ΓtE{Pt+h − Pt/Γt} +

E{(Pt+h − Pt)(Pt+h − Pt)
′/Γt}.

Using the independent and stationary increasement of a Brownian motion and the
compound Poisson process, we have
E{Γt+h−Γt/Γt} = (νQ′Q+ΓtΦ

′+ΦΓt)h+
√
Γt(E{Wh−W0})′

√
Q′Q+

√
Q′QE{Wh−

W0}
√
Γt+(E{Ph−P0})′

√
Γt+

√
ΓtE{Ph−P0}+E{(Ph−P0)(Ph−P0)

′} withW0 = 0
and P0 = 0.
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Thus, its latter is equal to
(νQ′Q+ ΓtΦ

′ +ΦΓt)h+ λh(m1̃)
√
Γt + λh

√
Γt(m1̃) + λhnσ2In + nλh(m1̃)2.

Doing tend t to +∞, we have
0 = νQ′Q+ Γ∞Φ′ +ΦΓ∞ + λ(m1̃)

√
Γ∞ + λ

√
Γ∞(m1̃) + λnσ2In + nλ(m1̃)2.

That is, Γ∞ is the solution of
Γ∞Φ′ +ΦΓ∞ + λ(m1̃)

√
Γ∞ + λ

√
Γ∞(m1̃) = −νQ′Q− λnσ2In − nλ(m1̃)2. �

4.2. Correlation between yield and its volatility. We assume that the model
checks:
i) each component of the vector Bt is independent with the one matrix W̃t (see the
third equation in (1.3));
ii) the continuous part of the yield logSt and the continuous part of its volatility
Γt are linearly correlated.

Theorem 4.6. The covariance between the each component of vector yield noise
d logSt and the one volatility noise matrix dΓt is given by for all i, j, h = 1, ..., n,

cov(d(log Sh,t)
c , d(Γij,t)

c) =

(

Γhi,t

n
∑

l=1

Qljρl + Γhj,t

n
∑

l=1

Qliρl

)

dt, with (4.4)

• logS.,t is the component of the yield vector logSt,
• ρ. is the component of vector ρ,
• Γ..,t is the component of the volatility matrix Γt and
• Q..is the component of the matrix Q′Q.

Proof. From the expressions
√
Γt = (σij,t)1≤i,j≤n which is symmetrical and Γt =

(Γij,t)i,j=1,...,n, we get

Γij,t =

n
∑

l=1

σil,tσjl,t. (4.5)

Now, let be i, j, h ∈ {1, ..., n}.
We have cov(d(log Sh,t)

c , d(Γij,t)
c) = < d(log Sh,t)

c , d(Γij,t)
c > with d(log Sh,t)

c

is the yield noise of logSh,t in the continuous part which is the h-th line of d logSt

defined in equation (1.3) by d(log Sh,t)
c =

(

µh − Γhh,t

2

)

dt +
n
∑

k=1

σhk,tdZk,t. And

d(Γij,t)
c is the component i-th row and j-th column of d(Γt)

c with

d(Γij,t)
c =

(

ν

n
∑

l=1

QilQjl +

n
∑

l=1

ΦilΓlj,t +

n
∑

l=1

Γil,tΦjl

)

dt

+

n
∑

m,l=1

(σim,tdWml,tQlj + σjm,tdWml,tQli). (4.6)

So

< d(log Sh,t)
c , d(Γij,t)

c >

=<

n
∑

k=1

σhk,tdZk,t ,

n
∑

m,l=1

(σim,tdWml,tQlj + σjm,tdWml,tQli) >

=<
n
∑

k=1

σhk,t(
√

1− ρ′ρdBk,t +
n
∑

p=1

dWkp,tρp) ,
n
∑

m,l=1

(σim,tdWml,tQlj+
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σjm,tdWml,tQli) > . (4.7)

Since each component of the vector Bt is independent with the one matrix W̃t, then
< dBk,t , dWsm,t >= 0 ∀ k, s and m.
So, using

< dWkp,t , dWml,t >=

{

0 si (k , p) 6= (m , l)
dt otherwise

, (4.8)

we have

(4.7) = <

n
∑

k=1

σhk,t

n
∑

p=1

dWkp,tρp ,

n
∑

m,l=1

(σim,tdWml,tQlj + σjm,tdWml,tQli) >

=

n
∑

k,l=1

(σhk,tσik,tQljρldt) +

n
∑

k,l=1

(σhk,tσjk,tQliρldt)

=

n
∑

k,l=1

(σhk,tσik,tQljρldt) +

n
∑

k,l=1

(σhk,tσjk,tQliρldt)

=

(

Γhi,t

n
∑

l=1

Qljρl + Γhj,t

n
∑

l=1

Qliρl

)

dt, through (4.5).

�

We assume that the model also checks:

i) the correlation between each component of the vector logSt and the one
matrix Γt is negative (volatility leverage effect),

ii) the correlation between each yield of the log basket logSp,t and the one
correlations ζpq,t, p, q = 1, ..., n and p 6= q is negative (correlation leverage
effect) where ζpq,t is the correlation between Γpp,t and Γqq,t defined by

ζpq,t =
Γpq,t

√

Γpp,tΓqq,t

. (4.9)

Theorem 4.7. The expressions of correlations between each component of the vec-
tor logSt and the one matrix Γt at time t are defined by:

corr((log Si,t)
c , (Γii,t)

c) =

n
∑

l=1

Qliρl
√

n
∑

l=1

Q2
li

, i = 1, ..., n. (4.10)

So, the sign and magnitude of the skew effect are determined by both the matrix Q
and the vector ρ.

Proof. Let be i ∈ [| 1, n |]. The standard deviation of (logSi,t)
c is

√

Γii,t. Indeed,
we have

d(logSt)
c =



µ+





tr(D1Γt)
:

tr(DnΓt)







 dt+
√
ΓtdZt. So V ar(d(log St)

c) = Γtdt.
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The standard deviation of (Γii,t)
c is

√

< (Γii,t)c > = 2

√

√

√

√Γii,t

n
∑

l=1

Q2
li. (4.11)

Indeed, we have

V ar((dΓii,t)
c) = < d(Γii,t)

c , d(Γii,t)
c >

= <

n
∑

m,l=1

(σim,tdWml,tQli + σim,tdWml,tQli) ,

n
∑

m,l=1

(σim,tdWml,tQli + σim,tdWml,tQli) >

=
n
∑

m,l,p,q=1

(4σim,tσip,t < dWml,t , dWpq,t > QliQqi)

=
n
∑

m,l=i

(4σim,tσim,t1dtQ
2
li), through (4.8)

= 4Γii,t

n
∑

l=1

Q2
lidt, through (4.5).

By using the correlation formula on an affine line rx,y = cov(x , y)
σxσy

, we have

corr((log Si,t)
c , (Γii,t)

c) =
<(logSi,t)

c , (Γii,t)
c)>√

Γii,t

√
<(Γii,t)c>

.

From the equations (4.4) and (4.11) and imposing i, j, h = 1, we have

corr((log Si,t)
c , (Γii,t)

c) =

2Γii,t

n
∑

l=1

Qliρl

√

Γii,t(2

√

Γii,t

n
∑

l=1

Q2
li)

=

n
∑

l=1

Qliρl

n
∑

l=1

Q2
li

.

�

4.3. Dependence between yield and its correlations.

Theorem 4.8. The expressions of covariances between each yield noise of the bas-
ket logSp,t and the correlations noises ζpq,t, p, q = 1, ..., n and p 6= q are given
by:

cov(d(log Sp,t)
c , d(ζpq,t)

c) =

(

n
∑

l=1

Qlqρl

)√

Γpp,t

Γqq,t

(1− ζ2pq,t)dt, (4.12)

with (ζpq,t)
c is the continuous part of ζpq,t.
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Proof. Let be p, q ∈ {1, ..., n}, p 6= q.

Applying Ito’s formula on Levy’s process f(Γt) =
Γpq,t√

Γpp,tΓqq,t

, we get

dζpq,t =
dΓpq,t

√

Γpp,tΓqq,t

−
1
2

1√
Γpp,t

Γpp,t

(

Γpq,t
√

Γqq,t

)

dΓc
pp,t −

1
2

1√
Γqq,t

Γqq,t

(

Γpq,t
√

Γpp,t

)

dΓc
qq,t

+
1

2

n
∑

i,j,k,l=1

∂2f(Γt)

∂Γij,t∂Γkl,t

d < (Γij)
c , (Γkl)

c >t +[f(Γt− +
√

Γt−J+

J ′√Γt− + JJ ′)− f(Γt−)]dNt.

So

d(ζpq,t)
c =

dΓpq,t
√

Γpp,tΓqq,t

− 1

2
√

Γpp,tΓpp,t

(

Γpq,t
√

Γqq,t

)

dΓc
pp,t −

1

2
√

Γqq,tΓqq,t
(

Γpq,t
√

Γpp,t

)

dΓc
qq,t +

1

2

n
∑

i,j,k,l=1

∂2f(Γt)

∂Γij,t∂Γkl,t

d < (Γij)
c , (Γkl)

c >t .

(4.13)

However

d < (Γij)
c , (Γkl)

c >t

=< d(Γij,t)
c , d(Γkl,t)

c >

=<

n
∑

m,r=1

(σim,tdWmr,tQrj + σjm,tdWmr,tQri) ,

n
∑

m,r=1

(σkm,tdWmr,tQrl+

σlm,tdWmr,tQrk) >

=

n
∑

m,r,p,s=1

σimσkp,tdWmr,tdWps,tQrjQsl + σim,tσlp,tdWmr,tdWps,tQrjQsk+

σjm,tσkp,tdWmr,tdWps,tQriQsl + σjm,tσlp,tdWmr,tdWps,tQriQsk

=

n
∑

m,r=1

σim,tσkm,tdtQrjQrl + σim,tσlm,tdtQrjQrk + σjm,tσkm,tdtQriQrl+

σjm,tσlm,tdtQriQrk, through (4.4)

= Γik,tdt

n
∑

r=1

QrjQrl + Γil,tdt

n
∑

r=1

QrjQrk + Γjk,tdt

n
∑

r=1

QriQrl+

Γjl,tdt

n
∑

r=1

QriQrk, through (4.5).

Then (4.13) is equal to

d(Γpq,t)
c

√

Γpp,tΓqq,t

− 1

2

Γpq,t
√

Γpp,tΓqq,t

(

d(Γpp,t)
c

Γpp,t

+
d(Γqq,t)

c

Γqq,t

)

+
1

2

n
∑

i,j,k,l=1

∂2f(Γt)

∂Γij,t∂Γkl,t
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[

Γik,t

n
∑

r=1

QrjQrl + Γil,t

n
∑

r=1

QrjQrk + Γjk,t

n
∑

r=1

QriQrl + Γjl,t

n
∑

r=1

QriQrk

]

dt.

(4.14)

Hence

cov(d(log Si,t)
c , d(ζpq,t)

c)

=
cov(d(log Si,t)

c , d(Γpq,t)
c)

√

Γpp,tΓqq,t

− 1

2

Γpq,t
√

Γpp,tΓqq,t
(

cov(d(log Si,t)
c , d(Γpp,t)

c)

Γpp,t

+
cov(d(log Si,t)

c , d(Γqq,t)
c)

Γqq,t

)

=

Γip,t

n
∑

l=1

Qlqρl + Γiq,t

n
∑

l=1

Qlpρl
√

Γpp,tΓqq,t

dt− 1

2

Γpq,t
√

Γpp,tΓqq,t








2Γip,t

n
∑

l=1

Qlpρl

Γpp,t

dt+

2Γiq,t

n
∑

l=1

Qlqρl

Γqq,t

dt









, through (4.4)

=

(Γqq,tΓip,t − Γpq,tΓiq,t)
n
∑

l=1

Qlqρldt

Γqq,t

√

Γpp,tΓqq,t

+

(Γpp,tΓiq,t − Γpq,tΓip,t)
n
∑

l=1

Qlpρldt

Γpp,t

√

Γpp,tΓqq,t

.

(4.15)

Assuming i = p, we have

(4.15) =

Γqq,tΓpp,t

n
∑

l=1

Qlqρl − Γpq,tΓpq,t

n
∑

l=1

Qlqρl

Γqq,t

√

Γpp,tΓqq,t

dt

=

n
∑

l=1

Qlqρl

(√

Γpp,t

Γqq,t

− Γpq,t
√

Γpp,tΓqq,t

Γpq,t

Γqq,t

)

dt

=
n
∑

l=1

Qlqρl

√

Γpp,t

Γqq,t

(1− ζ2pq,t)dt, through (4.9).

�

4.4. Up-jump and down-jump. On the one hand, our jump process ψt can make
the volatility Γt to down jump even it respects its positivity through the expression
of Γt of the form (1.2). On the other hand, a jump on the volatility will cause a
jump on the yield with the direction and frequency which depend the parameters
ϕi where the ϕi are the components of the vector ϕ.

4.5. Return to average. It is a very negative bias towards the average. The
deterministic part of O.U process on R κ(θ − xt) defines its return. The form is

imitated by the recall force of a spring expressed by ‖ ~F ‖= k|L − L0| where k is
the stiffness coefficient of spring and L0 is its empty length.
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4.6. Clusters of volatility. The level of volatility depends essentially the level
of volatility at the previous moment, which makes it possible to model periods of
high volatility and periods of low volatility. Hence, we observe a high volatility no
punctually but on the moment interval or the periods of high volatility generally
followed by periods of high volatility. Its phenomena calls the clusters of volatility.
The term

√
Γt on the diffusion in the dynamic of volatility can to render account

the periods of high volatility.

5. Application

We resume at first the C-GMM method (dependent data) to estimate the model
parameters but the details of its method are in the references [9, 10, 14]. And we
present after the results of estimations of the CAC40 and SP500 indexes by using
the model with its stylized facts.

5.1. Use of C-GMM method. Let ht be the continuum of moment conditions
defined by

ht = eς<w,Yt+1−Yt> −X (5.1)

with w ∈ Rn, X is a stochastic function of the process parameters and g(Yt) be an
arbitrary instrument. We determine X by the relation :

E(htg(Yt)) = 0 ⇔ E
(

eς<w,Yt+1−Yt>/Yt
)

− E(Xg(Yt)) = 0. (5.2)

Chacko and Viceira (1999) showed that

X = E
(

eς<w,Yt+1−Yt>/Yt
)

. (5.3)

In our case,

X = eC(1)
E

(

e<A(1),Γt>/Yt

)

= eC(1)ΨΓ0
(−ςA(1), t) (5.4)

with A(1) and C(1) ) are the deterministic functions of the characteristic function
ΨlogSt

(w, τ) = etr(A(τ)Γt)+B(τ)Yt+C(τ).
(5.2) is well defined if g(Yt) = 1 or (Yt) and (Γt) are independent processes. But
the second Assumption is not valid for our model. So, we suppose that g(Yt) = 1.

Let now, ĥ(.) be the empirical moment of h from Rn to C defined by

ĥ(w, θ) =
1

T

T
∑

t=1

ht(w, θ) (5.5)

where θ is the parameter vector of the model.
The C-GMM estimator of θ is defined by

θ̂ = arg min
θ

‖ K− 1
2 ĥT (θ) ‖ (5.6)

where K is the covariance operator and ‖ . ‖ is the norm defined by

‖ f ‖2=
∫

Rn

f(λ)f(λ)π(λ)dλ (5.7)

with π is a probability measure.
Carrasco (2007) have shown that the operator K can write as

Kf(w) =

∫

k(w, λ)f(λ)π(λ)dλ (5.8)
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with w, λ ∈ Rn, k is the coefficient defined by

k(w, λ) =
+∞
∑

j=−∞
E
θ0
(

ht(w, θ0)ht−j(λ, θ0)
)

(5.9)

where θ0 is the true value of θ.
To build K, Carrasco (2007) proposed the following steps. The first step is to find

θ̂1 = arg min
θ

‖ ĥT (θ) ‖ . (5.10)

The second step consists to estimate the coefficient k by

k(ws, wr, wv, ww) =
T

T − q

T−1
∑

j=−T+1

ω

(

j

ST

)

Γ̂T (j) (5.11)

with

Γ̂T (j) =















1
T

T
∑

t=j+1

ht(ws, wr, θ̂1)ht−j(wv, ww, θ̂1), j ≥ 0

1
T

T
∑

t=−j+1

ht+j(ws, wr, θ̂1)ht(wv, ww, θ̂1), j < 0

where ω(.) is the coef-

ficient satisfying the conditions defined in the work of Carrasco (2007) and ST is
the bandwidth parameter of ω.
When K is estimated, the minimization of (5.6) requires the inverse of K. Carrasco
(2007) used Tikhonov’s approximation which generalizes the inverse of K. Let α
be a strictly positive parameter, then K−1 is replaced by (Kα)−1 = (K2+αI)−1K.
So the optimal C-GMM estimator of θ is obtained by

θ̂ = arg min
θ

‖ (Kα)−1ĥT (θ) ‖ . (5.12)

Asymptotic convergence:
√
T (θ̂T − θ0)

L→ N
(

0,
(

< Eθ0(∇θh), E
θ0(∇θh) >K

)−1
)

when T and T a(αT )
5
4 tends to infinity and αT tends to 0 with ∇θh is the Jacobian

matrix of h(.).
Let us

Uht(w, θ̂
1
T ) = w(0)ht(w, θ̂1T ) +

T
∑

j=1

w

(

j

ST

)

(

ht−j(w, θ̂1T ) + ht+j(w, θ̂1T )
)

(5.13)

with the convention ht(w, θ̂
1
T ) = 0 if t ≤ 0 or t > T and in the case where (ht) is

uncorrelated, the form simplifies Uht = ht.
Carrasco (2007) have shown that the resolution of (5.12) is equivalent to

min
θ

W ′(θ)(αT IT + C2)−1V (θ) (5.14)

with C is the T × T dimensional matrix whose the components are ctl
T−q

where q

is the number of parameters of θ; IT is the T × T dimensional identity matrix;
V (θ) = (V1(θ), ..., VT (θ))

′ and W (θ) = (W1(θ), ...,WT (θ))
′ are the T-dimensional
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vectors where

Vt(θ) =

∫

Uht(w, θ̂
1
T )ĥT (w, θ)π(w)dw; (5.15)

Wt(θ) =

∫

ht(w, θ̂
1
T )ĥT (w, θ)π(w)dw; (5.16)

ctl =

∫

Uht(w, θ̂
1
T )hl(w, θ̂

1
T )π(w)dw. (5.17)

And the C-GMM estimator < Eθ0(∇θh), E
θ0(∇θh) >K is given by:

< ∇θĥT (θ̂T ), (K
αT )−1∇θĥT (θ̂T ) > =

1

T − q
W ′(θ̂T )(αT IT + C2)−1V (θ̂T )

(5.18)

with C is the matrix defined above, V = (V1, ..., VT )
′ and W = (W1, ...,WT )

′ are
the T × q dimensional matrices where

(Vt)j =

∫

Uht(w, θ̂
1
T )∇θj ĥT (w, θ̂T )π(w)dw; (5.19)

(Wt)j =

∫

ht(w, θ̂T )∇θj ĥT (w, θ̂T )π(w)dw. (5.20)

5.2. Gradient of the characteristic function. Let Yt = log(St) be the yield of
underlying and β be a component of the vector θ. Denote by ∂βf(θ) the partial
derivative of the function f(θ). We have

∂βΨYt,Γt
(w, τ) = (tr(∂βA(τ)Γt) + ∂βC(τ))ΨYt,Γt

(w, τ) (5.21)

with
∂βA(τ) = −A22(τ)

−1∂βA22(τ)A(τ) +A22(τ)
−1∂βA21(τ) (5.22)

∂βC(τ) = tr
(

(∂βr)τ 1̌(ςγ)
′ − ν

2
∂βlog(A22(τ))

)

− ντ

2

tr

(

∂βΦ+ ∂βΦ
′

2
+
ςw∂β(ρ

′√Q′Q) + ∂β(
√
Q′Qρ)ςw′

2

)

+∂β

[

λτ
(

etr[ωµ−1( 1
2
(m1̃)2+

√
Γt(m1̃)+ 1

2
σ2Γtω)−n

2
logµ] − 1

)]

.(5.23)

Let us G =





(Φ+ςwρ′√Q′Q)+(Φ+ςwρ′√Q′Q)′

2 −2Q′Q

− 1
2

n
∑

i=1

ςwieii +
1
2 (ςw)(ςw)

′ − (Φ+ςwρ′√Q′Q)+(Φ+ςwρ′√Q′Q)′

2



 .

If β = Φkl, then we have

∂βG =

[

ekl+e′kl

2 0

0 − ekl+e′kl

2

]

. (5.24)

If β = Qkl where
√
Q′Q = (Qkl)kl, then we have

∂βG =

[

e′klρςw
′+ςwρ′ekl

2 −2(
√
Q′Qekl + e′kl

√
Q′Q)

0 − e′klρςw
′+ςwρ′ekl

2

]

. (5.25)

If β = ρl, then we have

∂βG =

[√
Q′Qelςw

′+ςwe′l
√
Q′Q

2 0

0
√
Q′Qelςw

′+ςwe′l
√
Q′Q

2

]

(5.26)
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where (el) is the canonical basis of Rn and (ekl) is the canonical basis of Mn(R).
In addition

∂βe
τG = DexpτG

∂β(τG) (5.27)

where DexpX
= eX I−e−adX

adX
and adX = [X,Y ] = XY − Y X .

Let us P22L = L22 with L =

[

L11 L12

L21 L22

]

.

We have

∂βlog(A22(τ)) = Dlog,A22(τ)(P22DexpτG
∂β(τG)) (5.28)

where Df,X(H) = PMlog ◦ (P−1HP )P−1, P is the matrix associated of the eigen-
vector of X , A ◦ B = (aijbij) where A = (aij) and B = (bij) are the matrix in

Mn(R) and Mlog =

[

1
λ1

logλ1−logλ2

λ1−λ2
logλ1−logλ2

λ1−λ2

1
λ2

]

for n = 2.

We have also

eC(τ)ΨΓ0
(−ςA(τ), t) = etr(B(t)Γ0)+c(t)+C(τ) (5.29)

with

B(t) = (A(τ)B12(t) +B22(t))
−1(A(τ)B11(t) +B21(t)); (5.30)

c(t) = −ν
2
tr

[

log(A(τ)B12(t) +B22(t)) + t
Φ+ Φ′

2

]

− λt

+λ

∫ t

0

etr[B(u)∆(u)−1((m1̃)2+2
√

Γ
t−

(m1̃)+2Γ
t−

B(u)σ2)−n
2
log∆(u)]du (5.31)

C(τ) = tr

[

r1̌τ(ςγ)′ − ν

2

(

logA22(τ) + τ
Φ+ Φ′

2
+ τ

ςwρ′
√
Q′Q+

√
Q′Qρςw′

2

)]

+λτ
(

etr[ωµ−1( 1
2
(m1̃)2+

√
Γt(m1̃)+ 1

2
σ2Γtω)−n

2
log µ] − 1

)

. (5.32)

And

∂βe
C(τ)ΨΓ0

(−ςA(τ), t) = eC(τ)ΨΓ0
(−ςA(τ), t)(tr(∂βB(t)Γ0) + ∂βc(t) + ∂βC(τ))

(5.33)
with

∂βB(t) = −(A(τ)B12(t) +B22(t))(∂βA(τ)B12(t) +A(τ)∂βB12(t) + ∂βB22(t))
−1

B(t) + (A(τ)B12(t) +B22(t))
−1(∂βA(τ)B11(t) +B21(t)); (5.34)

∂βc(t) = −ν
2
tr[Dlog,A(τ)B12(t)+B22(t)(∂βA(τ)B12(t) +A(τ)∂βB12(t) + ∂βB22(t))]

+∂β

∫ t

0

λetr[B(u)∆(u)−1((m1̃)2+2
√

Γ
t−

(m1̃)+2Γ
t−

B(u)σ2)−n
2
log ∆(u)] − λdu.

(5.35)

5.3. Variation of correlation. To see the correlation leverage effect on the graph,
we need the expression of correlation noise. From the expressions of (4.6) and (4.14),
we get

d(ζ12,t)
c = (Atζ

2
12,t +Btζ12,t + Ct)dt

+

(

σ11,tQ12 + σ21,tQ11√
Γ11Γ22

−
(

σ11,tQ11

Γ11
+
σ21,tQ12

Γ22

)

ζ12,t

)

dW11,t
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+

(

σ11,tQ22 + σ21,tQ21√
Γ11Γ22

−
(

σ11,tQ21

Γ11
+
σ21,tQ22

Γ22

)

ζ12,t

)

dW12,t

+

(

σ12,tQ12 + σ22,tQ11√
Γ11Γ22

−
(

σ12,tQ11

Γ11
+
σ22,tQ12

Γ22

)

ζ12,t

)

dW21,t

+

(

σ12,tQ22 + σ22,tQ21√
Γ11Γ22

−
(

σ12,tQ21

Γ11
+
σ22,tQ22

Γ22

)

ζ12,t

)

dW22,t

(5.36)

where

At =
(Q11Q21 +Q12Q22)

√

Γ11,tΓ22,t

− Φ12

√

Γ22,t
√

Γ11,t

− Φ21

√

Γ11,t
√

Γ22,t

(5.37)

Bt = −ν(Q
2
11 +Q2

12)

2Γ11,t
− ν(Q2

21 +Q2
22)

2Γ22,t
+
Q2

11 +Q2
21

2Γ11,t
+
Q2

12 +Q2
22

2Γ22,t
(5.38)

Ct =
ν(Q11Q21 +Q12Q22)

√

Γ11,tΓ22,t

− 2(Q11Q12 +Q21Q22)
√

Γ11,tΓ22,t

+
Φ12

√

Γ22,t
√

Γ11,t

+
Φ21

√

Γ11,t
√

Γ22,t

(5.39)

5.4. Results of estimation. We present successively in this part : the indexes
with the data and the initial parameters used on the one hand; the technical of the
simulation on the other hand; and finally, we given the results obtained.

5.4.1. Monte Carlo study. We used the daily CAC40 and SP500 indexes. For each
stock, the time series start the January 03, 2017 and end the February 28, 2017
which are presented by the following figures 1 and 2.
We are restricted to two underlying (n = 2). The initial parameters used in the
simulation are:

Γ0 =

[

0.0225 −0.0054
−0.0054 0.0144

]

,Φ =

[

−5 −0.5
−0.5 −5

]

; ϕ = (−1,−1); ρ = (−0.3,−0.4);

ν = 15; m = 0.01; σ = 0.01; λ = 0.4; α = 0.00225; r = 0.05;
√
Q′Q =

[

0.12015891 −0.01131245
−0.01131245 0.09515434

]

.

The matrix
√
Q′Q is obtained by using the long-term relationship (4.3). It is a

necessary condition for the process Γt to be stationary.
The table 1 shows the descriptives statistics of the data used.
The figures 3 and 4 displays the C-GMM method criterion.

The table 2 presents the C-GMM estimator θ̂1 defined by the equation (5.10).

The results of the estimates of θ̂ with its standard deviations of errors are presented
in the table 3.
The table 4 presents the two measures which evaluates the performance of estima-
tion method.
The figures 5, 6, 7 and 8 give the characteristics and stylized facts captured by the
model and show also the forecast of two courses CAC40 and SP500.
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Figure 1. Historical Volume of the CAC40 Index
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Figure 2. Historical Volume of the SP500 Index

5.4.2. Empirical results. We present the results studying the data by statistics de-
scriptives analysis.

Table 1 : Analysis by descriptives statistics

Index Min. 1st Qu. Median Mean 3rd Qu. Max.
CAC40 4762 4844 4887 4885 4915 5027
SP500 2252 2272 2297 2317 2366 2395

The two underlying are no dispersed with compared to average. The price of CAC40
can be adjusted by the Gaussian distribution N(4885, 66.76434) ) and the price of
SP500 by N(2317, 46.19202).
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Figure 3. C-GMM estimation criterion

The figures 3 and 4 show us the values taken by : real and imaginary part of the

empirical moment of continuum ĥ defined in equation (5.5) and using the initial
parameters presented in top. The figures show us that the minimizations of (5.10)
and (5.6) exist.

Table 2 : C-GMM estimator θ̂1
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Figure 4. C-GMM estimation criterion

parameter estimator
ρ1 0,315492372
ρ2 0,125872773
Q11 0,106537319

Q12 = Q21 0,000000000
Q22 0,100000000
Φ11 -5,042305318
Φ12 -0,009478153
Φ21 -0,010086226
Φ22 -4,994793370
ν 15
r 0,046348362
λ 0,530854308
ϕ1 -0,962462315
ϕ2 -0,968014487
σ 0,240879750
m -0,010000000
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The minimum value for (5.10) is ‖ ĥT (θ̂1) ‖= 3, 965848.10−7.

Table 3 : C-GMM estimator θ̂
parameter estimator error standard deviation

ρ1 -0,300319856 0,2945596
ρ2 -0,400413190 0,2932194
Q11 0,100000000 0,2606736

Q12 = Q21 0,019316928 0,2624421
Q22 0,100000000 0,2108252
Φ11 -5,000272633 0,1096068
Φ12 -0,052671480 0,1866816
Φ21 -0,052652136 0,1865025
Φ22 -5,000203409 0,1132604
ν 15 2,074395
r 0,010835953 1,383036
λ 0,400197918 2,072974
ϕ1 -1,000097060 4, 903149.10−19

ϕ2 -1,000086892 4, 903145.10−19

σ 0.013988008 5, 339199.10−90

m 0.009962586 5, 339199.10−90

The minimum value of (5.14) is 1, 959312.10−9.

Table 4 : Mean Bias and RMSE (Root Mean Square Error)

parameter Mean Bias RMSE
ρ1 0,00477225 0,2725201
ρ2 -0,06413952 0,3444207
Q11 0,03423131 0,1477892

Q12 = Q21 0,1178646 0,2369885
Q22 -0,05795468 0,2426288
Φ11 0,02661671 0,1061759
Φ12 -0,03949117 0,2323495
Φ21 -0,05023514 0,1721152
Φ22 0,001419603 0,1094503
ν 0,707043 1,921048
r 0,1616506 1,500114
λ 0.1063068 1,952471
ϕ1 −1, 388808.10−19 4, 854741.10−19

ϕ2 2, 516983.10−21 6, 363063.10−19

σ −2, 287424.10−91 5, 595695.10−90

m 2, 424562.10−90 6, 135287.10−90

In modeling, we know that a model is pertinent if its volatility is very small,
so we estimate σ very small. In the figures of volatilities of CAC40 and SP500
below (figure 6) where we simulate again and simultaneously the volatilities of the
indexes CAC40 and SP500 with theirs yields and correlation, there exists a jump
captured by the model in time 214. The impact of these jumps on the yields are
presented in the figure 7. Here, the assets prices under the impact of jumps are
difference compared with the one of WASC. At time 214, the asset values of CAC40
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Figure 5. The characteristics captured by the model

and SP500 decrease respectively to -0,0062295 and -0,0086550 compared with the
one of WASC.
Using the expressions of correlations defined by equation (4.10), we find
corr((log S1,t)

c , (Γ11,t)
c) = −0, 3701 < 0 and corr((log S2,t)

c , (Γ22,t)
c) = −0, 4496

< 0 which we show us the asymmetrical correlation between the assets and its
volatility. Graphically, the figure 6 associated with the figure 7 shows us this
volatility leverage effect.

When we calculate numerically the sign of covariance defined in (4.12)
n
∑

l=1

Qlqρl,

we have find −0, 0458 < 0 is the sign of covariance between the asset CAC40 with
the correlation and −0, 0377 < 0 is the one of SP500 with the correlation which
we show us the asymmetrical correlation between the assets and its correlation.
Graphically, the figure 7 associated with figure 8 shows us this correlation leverage
effect.



34 T.R.H.ANDRIANANTENAINARINORO, T.J.RABEHERIMANANA

Figure 6. Volatilities noises of CAC40 and SP500

Figure 7. Yields noises of CAC40 and SP500

6. Discussion

We have developed a model which estimates the value of a basket carrying several
underlying assets whose price is characterized primarily by jumps, clusters, return
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Figure 8. Correlation noise between the volatility of CAC40 with SP500

to average, volatility and correlation leverage effects. The implementation of the
jumps process ψt in volatility stochastic and the new form respecting the stylized
effects of the WASC specify the model. By taking σ estimated very small, the
jumps exist and help the volatility of stochastic volatility of WASC to increase its
value. In addition, if the impact frequencies of jumps ϕ1 and ϕ2 estimated are
significant also, the model captures the value of assets perturbed. So, our model is
always pertinent even if there exists the recent turbulences on the market because
the jumps stabilize the value of σ estimated and capture the values perturbed by
jumping. However, the WASC model can’t to be the best model to estimate the
assets prices perturbed because either it try to capture the values perturbed by
obtaining σ estimated mostly big (there is an anomaly) or it don’t capture the
values perturbed.
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