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MEAN-VARIANCE PORTFOLIO SELECTION PROBLEM WITH
TIME-DEPENDENT SALARY FOR DEFINED CONTRIBUTION

PENSION SCHEME

CHARLES I. NKEKI

Abstract. This paper examines a mean-variance portfolio selection problem
with time-dependent salary in the accumulation phase of a defined contribu-
tion (DC) pension scheme. It was assumed that the flow of contributions
made by the pension plan member (PPM) are invested into a market that is
characterized by a riskless and a risky assets. The aim of this paper are to
find: the optimal portfolio, expected wealth of the PPM and efficient frontiers
under the three utility functions (Quadratic Utility Function (QUF), Power
Utility Function (PUF) and Exponential Utility Function (EUF)); the rela-
tionship between the three utility functions of PPM expected terminal wealth.
The optimal portfolio processes and expected wealth for the PPM were estab-
lished. The efficient frontier of a PPM portfolio in mean-standard deviation
under QUF, PUF and EUF were established. Expected terminal wealth for the
PPM at zero variance under QUF, EUF and PUF were obtained in this paper.
It was found that a linear relationship exists between the utility functions of
PPM expected terminal wealth (i.e., PUF and QUF, EUF and QUF and PUF
and EUF).

1. Introduction

The Defined Contribution (DC) pension scheme was established by the Nigerian
Pension Reform Act, 2004 which came into effect in June 25, 2004. The DC pen-
sion scheme has been in existence in several countries of the world. For example,
in May 1981, Chile replaced its pension scheme known as Pay-As-You-Go (defined
benefit) retirement scheme with a private managed system through making compul-
sory contribution into their retirement account. The Nigerian Pension Reform Act
(NPRA) 2004 establishes a DC pension scheme for payment of retirement benefits
of employees of the public service of the Federation, the Federal Capital Territory
and the private sector (see Section 1(1) of the NPRA). Before the NPRA, the Nige-
rian pension scheme was poorly managed. This generated a lot of problems. The
aims and objectives of the DC pension scheme are contained in Section 2 of the
NPRA. These include (i) To ensure that every person who worked in either the
public service of the Federation, Federal Capital Territory or private sector receives
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his retirement benefits as and when due; (ii) To assist improvident individuals by
ensuring that they save in order to cater for their livelihood during old age; and
(iii) To establish a uniform set of rules, regulations and standards for the adminis-
tration and payments of retirement benefits for the public service of the Federation,
Federal Capital Territory and the private sectors.

The DC pension scheme is contributory, fully funded, depend on individual ac-
counts and level of risk. The Pension Fund Administrators (PFAs) have the statu-
tory duty to manage the contributions of the PPMs under their care. The pension
fund assets are held by Pension Fund Custodians (PFCs) under direct regulation
process. The NPRA provides that both the employee and employer should make
equal contributions into the DC pension scheme. Section 9(1) of the NPRA, pro-
vides that the employees should contribute a minimum of 7.5% of their Basic salary,
Housing and Transport allowances and the employers should contribute 7.5% as
well, of the employees salary, Housing and Transport allowances in case of both the
public and the private sectors. An employer may elect to contribute on behalf of
the employees provided that the total contributions should not be less than 15% of
the Basic salary, Housing and Transport allowances of the employees (see Section
9(2) of the NPRA), for more on NPRA, see [28].

A mean-variance optimization is a quantitative method used to construct port-
folios for the investors when the market is less volatile. The optimal investment
allocation strategy can be found by solving a mean and variance optimization prob-
lem, see [24].

There are extensive literature that exist on the area of accumulation phase of
DC pension plan and optimal investment strategies. See for instance, [6], [8], [16],
[4], [2], [5], [10], [13], [25], [11], [9]. [21], [22], [23].

In the context of DC pension plans, the problem of finding the optimal invest-
ment strategy with time-dependent salary under mean-variance efficient approach
has not been reported in published articles. [14] and [25] assumed a constant flow
of contributions into the pension scheme which will not be applicable to a time-
dependent salary earners in pension scheme. We assume that the contribution of
the PPM grows as the salary grows over time. In the literature, the problem of de-
termining the minimum variance on trading strategy in continuous-time framework
has been studied by [20] via the Martingale approach. [1] used the same approach
in a more general framework. [17] solved a mean-variance optimization problem
in a discrete-time multi-period framework. [26] considered a mean-variance in a
continuous-time framework. They show the possibility of transforming the difficult
problem of mean-variance optimization problem into a tractable one, by embed-
ding the original problem into a stochastic linear-quadratic control problem, that
can be solved using standard methods. These approaches have been extended and
used by many in the financial literature, see for instance, [25], [3], [14], [7], [15]. In
this paper, we study a mean-variance approach to portfolio selection problem with
time-dependent salary of a PPM in accumulation phase of a DC pension scheme
under three utility functions. The utility functions were analyzed and the results
compared to determined which them is more suitable for a scheme like pension
plan. [24] considered a mean-variance portfolio selection problem with inflation
hedging strategy for a defined contributory pension scheme. The efficient frontier
was obtained for three asset classes which include cash account, stock and inflation-
linked bond. It was found that inflation-linked bond is a suitable asset for hedging
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inflation risks in an investment portfolio. The paper assumed that the flow of con-
tributions of the PPM is constant rate. In this paper, we assume that the salary of
the PPM is a time-dependent process.

Highlights of this paper: (i) The portfolio values under mean-variance with time-
dependent salary were obtained; (ii) The expected final wealth under EUF was
found to coincides with the result obtained by [25] only when initial salary is a unit
and growth rate null; (iii) The variance of expected final fund whether constant
and deterministic salary under exponential utility function was found to be the
same; (iv) The efficient frontier of the portfolios in mean-standard deviation was
established under QUF, PUF and EUF; (v) The relationship between the expected
final wealth for the PPM under PUF and QUF, EUF and QUF and PUF and EUF
were established.

The remainder of this paper is organized as follows. In section 2, we present
the problem formulation and financial market models. We also establish in this
section, is the dynamics of the wealth process of PPM. In section 3, we present
the mean-variance approach. In section 4, we present the optimization processes
of our problem and expected wealth at time t and at the terminal period for the
PPM. Also, in this section, we presents the efficient frontier of the mean-standard
deviation under QUF. Section 5 present the optimization processes of our problem
and expected wealth at time t and at the terminal period as well as the efficient
frontier for the PPM under EUF. In section 6, we present the optimization processes
of our problem and expected wealth at time t and at the terminal period for the
PPM under PUF. Also, in this section, we presents the efficient frontier of the
mean-standard deviation under PUF. In section 7, we present the special case of
our models. Section 8 presents the numerical examples of our models. Finally,
section 9 concludes the paper.

2. Problem Formulation

Let (Ω,F ,P) be a probability space. Let F(F) = {Ft : t ∈ [0, T ]}, where
Ft = σ(W (s) : s ≤ t) and the Brownian motion W (t), t ∈ [0, T ] is a 1-dimensional
process, defined on a given filtered probability space (Ω,F ,F(F),P), t ∈ [0, T ],
where P is the real world probability measure and T the terminal time. σ is the
volatility of stock with respect to changes inW (t). µ > 0 is the appreciation rate for
stock. Moreover, σ is the volatility for the stock and is referred to as the coefficient
of the market and is progressively measurable with respect to the filtration F .

2.1. Financial Models. In this paper, we assume that the pension fund adminis-
trator (PFA) faces a market that is characterized by a risk-free asset (cash account)
and risky asset, all of whom are trade-able. Therefore, the dynamics of the under-
lying assets are given in (2.1) and (2.2):

dB(t) = rB(t)dt,B(0) = 1 (2.1)

dS(t) = S(t) (µdt+ σdW (t)) , S(0) = s0 > 0 (2.2)

where, r is the nominal interest rate, B(t) is the price process of the cash account
at time t, S(t) is stock price process at time t.

We assume in this paper that the salary process Y (t) at time t of the PPM
satisfies

dY (t) = βY (t)dt, Y (0) = y0 > 0, (2.3)
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where β is the growth rate of the salary process of PPM. We assume that the
PPM make the contributions because it is compulsory not because of the market
conditions.

2.2. The Wealth Dynamics. Let c > 0 be the proportion of the PPM salary
that is contributed into the pension plan (which is deducted at source), then the
amount of contributions made by the PPM is cY (t) at time t. Let X(t) be the
wealth process of the PPM at time t and ∆(t) be the portfolio process in stock at
time t and ∆0(t) = 1 −∆(t) is the proportion of wealth invested in cash account
at time t. Therefore, the total wealth process defined as Xy(t) = X(t) + cY (t) of
the PPM is governs by the stochastic differential equation (SDE):

dXy(t) = (X(t)(r + ∆(t)(µ− r)) + cβY (t)) dt+ ∆(t)X(t)σdW (t),

Xy(0) = xy0 = x0 + cy0 > 0
(2.4)

where, X(t) satisfies the dynamics

dX(t) = X(t)(r + ∆(t)(µ− r))dt+ ∆(t)X(t)σdW (t),

X(0) = x0
(2.5)

The amount x0 is the initial fund paid into PPM’s account. If no amount is paid
into the PPM account at the beginning, then the initial wealth is null. But, in this
paper, we assume that at the beginning of the planning horizon, x0 > 0 amount of
money is paid into the PPM’s account.

3. The Mean-Variance Approach

In this section, we assume that the PPM invests his/her contributions through
the PFA from time 0 to time T . The aim of the PPM is to maximize his/her ex-
pected terminal wealth and simultaneously minimize the variance of the terminal
wealth. Hence, the PPM aim at minimizing the vector

[−E(X(T )), V ar(X(T ))] .

Definition 1. The portfolio strategy ∆(.) is said to be admissible if ∆(.) ∈ L2
F ([0, T ];R).

Definition 2. The mean-variance optimization problem is defined as

min
∆

J = [−E(X(T,∆)), V ar(X(T,∆))] (3.1)

subject to: {
∆(.), set of admissible portfolio strategy

X(.)∆(.), satisfy(2.5).

Solving (3.1) is equivalent to solving the following equation

min
∆

[−E(X(T,∆(.))) + ψV ar(X(T,∆(.)))], ψ > 0, (3.2)

see [26]. [26] and [17] show that it is possible to transform (3.2) into a tractable
one, see also [14]. They established that (3.2) is equivalent to the problem

min
∆(.)

E[ψX2(T )− δX(T )], (3.3)

where,
δ∗ = 1 + 2ψE(X∗(T )). (3.4)
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(3.4) can be re-express as in terms of cE(Y (T )) as follows:

δ∗ = 1 + 2ψ(E(X̄∗(T ))− cy0e
βT ), (3.5)

where Xy(t) = X̄(t).
(3.3) is known as a linear-quadratic control problem. Hence, instead of solving

(3.2), we now solve the following

min(J(∆(.)), ψ, δ) = E
[
ψX(T,∆(.))2 − δX(T,∆(.))

]
, (3.6)

subject to: {
∆(.), set of admissible portfolio strategy

X(.)∆(.), satisfy(2.5).

4. The Optimization problem

In solving (3.6), we set ω =
δ

2ψ
and H(t) = X(t)−ω, see [14] and [25]. It implies

that
E

[
ψX(t,∆(t))2 − δX(t,∆(t))

]
= E

[
ψ(X(t)H(t)−X(t)2)

]
. (4.1)

Therefore, our problem is equivalent to solving

min
∆(.)

J (∆(.), ψ, δ, y) = min
∆(.)

[
ψH(T )2

2

]
(4.2)

where the process H(t) follows the SDE:

dH(t) = H(t) + ω) (r + ∆(t)(µ− r)) dt+ (H(t) + ω)∆(t)σdW (t),

H(0) = x− ω = h
(4.3)

H(0) = x− ω = h, and

dHy(t) = ((H(t) + ω) (r + ∆(t)(µ− r)) + cβY (t)) dt+ (H(t) + ω)∆(t)σdW (t),

Hy(0) = x− ω + cy = h+ cy

(4.4)
(4.3) is a standard optimal stochastic control problem. Let

U(t, h, y) = inf
∆(.)

Et,h,y

[
ψHy(T )2

2

]
= inf

∆(.)
J (∆(.), ψ, δ, y) . (4.5)

Then, the value function U satisfies the following Hamilton-Jacobi-Bellman (HJB)
equation:

inf
∆∈R

{Ut + (h+ ω)(∆(t)(µ− r) + r)Uh + cβyUy +
1
2
σ2(h+ ω)2∆2

S(t)Uhh} = 0,

U(T, h, y) =
1
2
ψh2 + cy

(4.6)
Assuming U to be a convex function of h and y, then first order conditions lead

to the optimal fraction of portfolios to be invested in stock at time t:

∆∗(t) =
−(µ− r)Uh
σ2(h+ ω)Uhh

. (4.7)

Now, substituting (4.7) into (4.6), we have

Ut + r(h+ ω)Uh + cβyUy −
(µ− r)2U2

h

2σ2Uhh
= 0. (4.8)
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4.1. Optimization of a PPM’s Portfolio and Wealth Using QUF. In this
paper, we assume the Quadratic Utility Function (QUF) of the form:

U(t, h, y) = P (t)h2 + (Q(t)h+ cR(t)y) + V (t). (4.9)

Finding the partial derivative of U in (4.9) with respect to h, y and hh, and then
substitute into (4.8), we have the following system of ordinary differential equations
(ODEs):

P ′(t) = (θ2 − 2r)P (t), (4.10)

Q′(t) = (θ2 − r)Q(t)− 2rωP (t), (4.11)

R′(t) = −cβR(t), (4.12)

V ′(t) =
θ2Q(t)2

4P (t)
− rωQ(t), (4.13)

with boundary conditions

P (T ) =
1
2
ψ, Q(T ) = 0, R(T ) = 1, V (T ) = 0.

Solving the systems of ODEs in (4.10) to (4.13) using the boundary conditions, we
have the following:

P (t) =
1
2
ψe(2r−θ

2)(T−t)) (4.14)

Q(t) = ωψe(−(θ2−r)(T−t))[e((r(T−t)) − 1], (4.15)

R(t) = e(cβ(T−t)), (4.16)

V (t) =
∫ t

T

{
θ2Q(u)2

4P (u)
− rωQ(u)

}
du (4.17)

It then follows that by substituting (4.14)-(4.17) into (4.9), we have

U(t, h, y) =
h2

2
ψe(2r−θ

2)(T−t)) + ωψhe(−(θ2−r)(T−t))[e((r(T−t)) − 1]

+cyecβ(T−t) +
∫ t

T

{
θ2Q(u)2

4P (u)
− rωQ(u)

}
du.

This represents the utility of wealth the will accrued to the investor. At t = 0, we
have

U(0, h = x0 − ω, y = y0) =
(x0 − ω)2

2
ψe(2r−θ

2)T ) + ωψ(x0 − ω)e(−(θ2−r)T )[erT − 1]

+cy0ecβT −
∫ T

0

{
θ2Q(u)2

4P (u)
− rωQ(u)

}
du.

This represents the initial utility of wealth of the investor.
At t = T , we have

U(T, h, y) =
h2

2
ψ + cy.

This represents the terminal utility of wealth of the investor.
We observe that our utility function U is indeed convex, since

Uhh = 2P (t) > 0, ψ > 0. (4.18)

Now, substituting partial derivative of U into (4.7), we have the following:

∆∗(t) =
−(µ− r)
σ2(h+ ω)

[(h+ ω)− ωe(−r(T−t))]. (4.19)
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Hence, substituting X∗(t) for h+ ω and τ = t in (4.19), we have the following:

∆∗(t) =
−(µ− r)
σ2X∗(t)

[X∗(t)− ωe−r(T−t)]. (4.20)

The evolution of the stochastic fund for the PPM under optimal control Xy∗(t) =
X̄∗(t) can be obtained by substituting (4.20) into (2.5) as follows:

dX̄∗(t) = ((r − θ2)X̄∗(t) + ωθ2e−r(T−t) + c(β − r + θ2)Y (t))dt
−θ(X̄∗(t)− cY (t)− ωe−r(T−t))dW (t)

(4.21)

By application of Ito’s formula to (4.21), we obtain the SDE that governs the
evolution of X̄∗2(t):

dX̄∗2(t) = ((2r − θ2)X̄∗2(t) + 2c(β − r)Y (t)X̄∗(t) + 2cY (t)ω2θ2e−r(T−t)

+c2θ2Y 2(t) + θ2ω2e−2r(T−t))dt− 2θ(X̄∗2(t)− cY (t)X̄∗(t)− X̄∗(t)ωe−r(T−t))dW (t).
(4.22)

Taking the expectation on both sides of (4.21) and (4.22), we obtain the following
ODEs:{

dE(X̄∗(t)) = ((r − θ2)E(X̄∗(t)) + θ2ωe(−r(T−t)) + c(β − r + θ2)y0eβt)dt,
E(X̄∗(0)) = x̄0

(4.23)
dE(X̄∗2(t)) = ((2r − θ2)X̄∗2(t) + 2c(β − r)y0eβtX̄∗(t)
+2cy0eβtω2θ2e−r(T−t) + c2θ2y2

0e
2βt + θ2ω2e−2r(T−t))dt

E(X̄∗2(0)) = x̄2
0

(4.24)

where xy0 = x̄0. Solving the ODE (4.23) and (4.24), we find that the expected value
of the wealth and its second moment under optimal control at time t are

E(X̄∗(t)) = x̄0e
(r−θ2)t + ωe−r(T−t)(1− e−θ

2t) + cy0(eβt − e(r−θ
2)t). (4.25)

E(X̄∗2(t)) = x̄2
0e

(2r−θ2)t + 2c(β − r)y0[
x̄0

β − r
(e(β+r−θ2)t − 1)

+ω{(e
−rT+(β+r)t

β − r + θ2
− e−rT

β − r + θ2
)− (

e−rT+(β+r−θ2)t

β − r + θ2
− e−rT

β − r + θ2
)}

+
cy0

2β − 2r + θ2
((e2βt − 1)− (

e(β+r−θ2)t

β − r
− 1
β − r

))] + ω2(
2cy0θ2

β − θ2 − r

(e−rT+(β+r)t − e−rT ) + (e−2rT+θ2t − e−2rT )) +
c2θ2y2

0

2β − 2r + θ2
(e2βt − 1).

(4.26)

At t = T , we have the expected terminal wealth of the PPM to be

E(X̄∗(T )) = x̄0e
(r−θ2)T + ω(1− e−θ

2T ) + cy0(eβT − e(r−θ
2)T ). (4.27)

At t = T , we have the second moment of expected terminal wealth of the PPM to
be

E(X̄∗2(T )) = x̄2
0e

(2r−θ2)T + 2c(β − r)y0[
x̄0

β − r
(e(β+r−θ2)T − 1)

+
cy0(e2βT − 1)
2β − 2r + θ2

− cy0
β − r

(e(β+r−θ2)T − 1)] +
2c(β − r)y0ω
β − r + θ2

(eβT − e(β−θ
2)T )

+ω2(
2cy0θ2

β + θ2 − r
(eβT − e−rT ) + (e−(2r−θ2)T − e−2rT )) +

c2θ2y2
0

2β − 2r + θ2
(e2βT − 1).

(4.28)
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From (3.4) and (4.27) and the definition of ω∗, we have that ω∗ is a decreasing
function of ψ:

ω∗ =
eθ

2T

2ψ
+ (x̄0 − cy0)erT . (4.29)

Therefore, the expected optimal terminal wealth of the PPM can be rewritten in
terms of ψ as follows:

E(X̄∗(T )) = x̄0e
rT +

eθ
2T − 1
2ψ

+ cy0(1− erT ). (4.30)

From (4.30), we observe that the expected terminal wealth of the PPM is the
sum of the wealth that one would get investing the whole portfolio always in the
risk-free asset plus the term, cy0(1− erT ) that depend riskless asset and the initial

contributions of the PPM, plus a term,
eθ

2T − 1
2ψ

that depend both on the goodness

of the risky asset with respect to the risk-free one and on the weight given to
the minimization of the variance. Thus, the higher the expected optimal terminal
wealth value, for everything else being equal; the higher the variance minimization
parameter, ψ, the lower its expected terminal wealth. In the same vain, the higher
the growth rate of the contributions of PPM, the higher the terminal wealth of the
PPM which is an intuitive result. We therefore conclude that the higher the Sharpe
ratio θ2 and the growth rate of salary of PPM, the higher the terminal wealth of
the PPM.

Again, the expected second moment of optimal terminal wealth of the PPM can
be rewritten as follows:

E(X̄∗2(T )) = x̄2
0e

(2r−θ2)T + 2c(β − r)y0[
x̄0

β − r
(e(β+r−θ2)T − 1)

+
cy0(e2βT − 1)
2β − 2r + θ2

− cy0
β − r

(e(β+r−θ2)T − 1)] + (
1

2ψ
− cy0e

βT )
2c(β − r)y0
(β − r + θ2)

(eβT − e(β−θ
2)T )

+
c2θ2y2

0

2β − 2r + θ2
(e2βT − 1) + (

1
2ψ

− cy0e
βT )2(

2cy0θ2

β + θ2 − r
(eβT − e−rT ) + (e−(2r−θ2)T − e−2rT ))

+E(X̄∗(T ))[
2c(β − r)y0
β − r + θ2

(eβT − e(β−θ
2)T ) + (

1
2ψ

− cy0e
βT )(

2cy0θ2

β + θ2 − r
(eβT − e−rT )

+(e−(2r−θ2)T − e−2rT ))] + (E(X̄∗(T )))2(
2cy0θ2

β + θ2 − r
(eβT − e−rT )

+(e−(2r−θ2)T − e−2rT )).
(4.31)

The optimal proportion of wealth to be invested in risky asset can be expressed
in terms of ψ and terminal wealth as follows:

∆∗(t) =
(µ− r)

γσSσ′SX
∗(t)

[X∗(t)− E(X̄∗(T ))e−r(T−t) + cy0e
βT−r(T−t) − e−r(T−t)

2ψ
].

(4.32)
At t = 0, we have

∆∗(0) =
(µ− r)
γσSσ′Sx0

[x0 − E(X̄∗(T ))e−rT + cy0e
(β−r)T − e−rT

2ψ
]. (4.33)

From (4.32), the amount X∗(t)∆∗(t) invested in risky asset at time t is propor-
tional to the difference between the wealth X∗(t) at time t and the wealth available
investing always in cash account, minus the wealth available investing in risk-free
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asset (i.e., cash account), minus a term that depends on ψ, r and the time to retire-
ment. In addition, the higher the weight of the variance minimizer , the higher the
amount invested in the risky asset and vice versa. Hence, the strategy of investing
the portfolio in both risk-free and stock is optimal if and only if the weight ψ,
tends to infinity. Therefore, the amount X∗(t)∆∗(t) invested in stock at time t is
proportional to the difference between the wealth X∗(t) at time t and the amount
that would be sufficient to guarantee the attainment of the target by the adoption
of both the cash account and stock strategies until retirement.

If ψ →∞, the expected portfolio of the PPM will be

∆∗(t) = − (µ− r)
X∗(t)σ2

(
X∗(t)− (E(X̄∗(T ))e−r(T−t) + cy0e

βT−r(T−t)
)
. (4.34)

(4.34) shows that the expected terminal wealth of a PPM will increase if the un-
derlying assets are less volatile, which is an expected result. Again, if ψ →∞, the
expected terminal wealth of the PPM will be

E(X̄∗(T )) = x̄0e
rT + cy0(1− erT ). (4.35)

4.2. Efficient Frontier under QUF. The variance of the optimal portfolio under
QUF is given as follows:

V ar(X̄∗(T )) = E(X̄∗2(T ))− [E(X̄∗(T ))]2 = x̄2
0e

(2r−θ2)T + 2c(β − r)y0[
x̄0

β − r
(e(β+r−θ2)T − 1)

+
cy0(e2βT − 1)
2β − 2r + θ2

− cy0
β − r

(e(β+r−θ2)T − 1)] + (
1

2ψ
− cy0e

βT )
2c(β − r)y0
(β − r + θ2)

(eβT − e(β−θ
2)T )

+
c2θ2y2

0

2β − 2r + θ2
(e2βT − 1) + (

1
2ψ

− cy0e
βT )2(

2cy0θ2

β + θ2 − r
(eβT − e−rT ) + (e−(2r−θ2)T − e−2rT ))

+E(X̄∗(T ))[
2c(β − r)y0
β − r + θ2

(eβT − e(β−θ
2)T ) + (

1
2ψ

− cy0e
βT )(

2cy0θ2

β + θ2 − r
(eβT − e−rT )

+(e−(2r−θ2)T − e−2rT ))] + (E(X̄∗(T )))2(
2cy0θ2

β + θ2 − r
(eβT − e−rT )

+(e−(2r−θ2)T − e−2rT )).
(4.36)

Setting

z1(T ) = x̄2
0e

(2r−θ2)T + 2c(β − r)y0[
x̄0

β − r
(e(β+r−θ2)T − 1)

+
cy0(e2βT − 1)
2β − 2r + θ2

− cy0
β − r

(e(β+r−θ2)T − 1)] + (
1

2ψ
− cy0e

βT )
2c(β − r)y0
(β − r + θ2)

(eβT − e(β−θ
2)T )

+
c2θ2y2

0

2β − 2r + θ2
(e2βT − 1) + (

1
2ψ

− cy0e
βT )2(

2cy0θ2

β + θ2 − r
(eβT − e−rT ) + (e−(2r−θ2)T − e−2rT )),

z2(T ) =
2c(β − r)y0
β − r + θ2

(eβT−e(β−θ
2)T )+(

1
2ψ
−cy0eβT )(

2cy0θ2

β + θ2 − r
(eβT−e−rT )+(e−(2r−θ2)T−e−2rT )),

and

z3(T ) = (
2cy0θ2

β + θ2 − r
(eβT − e−rT ) + (e−(2r−θ2)T − e−2rT ))− 1,

then (4.36) becomes

V ar(X̄∗(T )) = z1(T ) + z2(T )E(X̄∗(T )) + z3(T )(E(X̄∗(T )))2. (4.37)

It implies that the standard deviation of the terminal wealth will be

σ(X̄∗(T )) =
√
z1(T ) + z2(T )E(X̄∗(T )) + z3(T )(E(X̄∗(T )))2. (4.38)
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Figure 1. Efficient Frontier under QUF. This is obtained by set-
ting µ = 0.09, σ = 0.3, β = 0.0292, c = 0.15, y0 = 0.9, T = 20,
r = 0.04, x0 = 0.865, ψ = 1.

If V ar(X̄∗(T )) = 0, it implies that z3(T )(E(X̄∗(T )))2+z2(T )E(X̄∗(T ))+z1(T ) = 0.
It then follows that

E(X̄∗(T )) =
−z2(T )±

√
z2(T )2 − 4z1(T )z3(T )
2z3(T )

. (4.39)

Observe from (4.39) that if z2(T )2 ≥ 4z1(T )z3(T ), the expected terminal wealth
will have real values, and real and imaginary values when z2(T )2 < 4z1(T )z3(T ).
(4.39) gives the expected terminal wealth of the PPM when the portfolio is free
from risky under QUF.

We found from figure 3 that limX̄∗(t)−→+∞∆∗(t) = −0.55556 and from figure 4
that limX̄∗(t)−→+∞∆∗

0(t) = 1.55556.
Figure 1 shows the efficient frontier of the two classes of assets under QUF. It

shows that for a wealth of 1 to 2 million, the PPM stand the risk of losing 0.0 to
0.9 million. Figure 2 shows the efficient frontier under QUF but with the wealth
1 to 6 million and stands the risk of losing 0 to 3.5 million. Figure 3 shows the
portfolio value of the PPM in a riskless asset up to retirement. It is observe that
the portfolio value in riskless asset is nonnegative overtime. Figure 4 shows the
portfolio value of a PPM in risky asset under QUF. It is observe that as time goes
on, the portfolio value in risky asset will tends to a negative value. Therefore, the
portfolio in the risky asset should be gradually move to the riskless asset.
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Figure 2. Efficient Frontier under QUF. This is obtained by set-
ting µ = 0.09, σ = 0.3, β = 0.0292, c = 0.15, y0 = 0.9, T = 20,
r = 0.04, x0 = 0.865, ψ = 1.

5. Optimization of a PPM’s Portfolio and Wealth Using EUF

Consider the EUF

Ue(t, h, y) = −e−α(hQe(t)+cyPe(t))+R(t).

with (constant) Arrow-Pratt coefficient of absolute risk aversion equal to

ARA(h) = −U
′′
e (h)
U ′e(h)

= α > 0.

Finding the partial derivative of Ue(t, h, y) with respect to t, h, y and hh and
substitute into (4.8), we have the following ODEs:

Q′e(t) + rQe(t) = 0
P ′e(t) + cPe(t) = 0

R′e(t)− rωeαQe(t)−
θ2

2
= 0

(5.1)

Solving the ODEs (5.1), we have{
Qe(t) = er(T−t)

Qe(T ) = 1
(5.2)

{
Pe(t) = ec(T−t)

Pe(T ) = 1
(5.3)
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Figure 3. Portfolio Value in Riskless Asset under QUF. This is
obtained by setting µ = 0.09, σ = 0.3, β = 0.0292, c = 0.15,
y0 = 0.9, T = 20, r = 0.04, x0 = 0.865, ψ = 1.

 Re(t) = αω(er(T−t) − 1)− θ2(T − t)
2

,

Re(T ) = 0
(5.4)

The utility function under this strategy now becomes

Ue(t, h, y) = −e−α(her(T−t)+cyec(T−t))+αω(er(T−t)−1)− θ2(T−t)
2 ,

Ue(T, h, y) = −e−α(h+cy).

At t = 0, we have

Ue(0, h, y) = −e−α(herT +cyecT )+αω(erT−1)− θ2T
2 .

Replacing partial derivatives of U (4.8) and replacing h+ ωe with X∗
e (t) yields

∆∗
e(t) =

(µ− r)e−r(T−t)

ασ2X∗
e (t)

. (5.5)

Observe that when the optimal fund is considerably large, it implies that the entire
fund should remain only in cash account until retirement. The evolution of the
fund under optimal control X̄∗

e (t) can be easily obtained as

dX̄∗
e (t) =

(
rX̄∗

e (t) +
θ2

α
e−r(T−t) + c(β − r)Y (t)

)
dt+

θ2

α
e−r(T−t)dW (t). (5.6)
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Figure 4. Portfolio Value in Risky Asset under QUF. This is
obtained by setting µ = 0.09, σ = 0.3, β = 0.0292, c = 0.15,
y0 = 0.9, T = 20, r = 0.04, x0 = 0.865, ψ = 1.

By application of Itô formula to (5.6), we obtain

dX̄∗
e
2(t) = (2rX∗

e
2(t) + (

2θ2

α
e−r(T−t) + 2c(β − r)Y (t))X̄∗

e (t)

+
θ4

α2
e−2r(T−t))dt+

2θ2

α
e−2r(T−t)dW (t)

(5.7)

Taking the expectation of both sides of (5.6) and (5.7), we find that the expected
value of the optimal fund and the expected value of its square (i.e. the moment)
follow the linear ODEs: dE(X̄∗

e (t)) =
(
rE(X̄∗

e (t)) +
θ2

α
e−r(T−t) + c(β − r)y0eβt

)
dt

E(X̄∗
e (0)) = x̄0

(5.8)


dE(X̄∗

e
2(t)) = (2rE(X∗

e
2(t)) + (

2θ2

α
e−r(T−t)

+2c(β − r)y0eβt)E(X̄∗
e (t)) +

θ4

α2
e−2r(T−t))dt

E(X∗
e
2(0)) = x̄2

0

(5.9)

By solving the ODEs, we find that the expected value of the fund under optimal
control at time t under EUF is:

E(X̄∗
e (t)) = x̄0e

rt − cy0
(
ert − eβt

)
+
θ2t

α
e−r(T−t) (5.10)



14 CHARLES I. NKEKI

and the expected value of the square of the fund under optimal control at time t
under EUF is:

E(X̄∗
e
2(t)) =

(
cβy0e

βt − (rx̄0 + cβy0 − x̄0β)ert

r − β

)2

−

2tθ2

α(r + β)

(
cβy0e

−r(T−t)+βt − (rx̄0 + cβy0 − x̄0β)e2rt−rT
)

+

tθ2(α+ tθ2)
α2

e−2(T−t)

(5.11)

At terminal time T , we have:

E(X̄∗
e (T )) = x̄0e

rT − cy0
(
erT − eβT

)
+
θ2T

α
(5.12)

and

E(X̄∗
e
2(T )) =

(
cβy0e

βT − (rx̄0 + cβy0 − x̄0β)erT

r − β

)2

−

2Tθ2

α(r + β)
(
cβy0 + βT )− (rx̄0 + cβy0 − x̄0β)erT

)
+

Tθ2(α+ Tθ2)
α2

(5.13)

(5.13) is equivalent to:

E(X̄∗
e
2(T )) = (E(X̄∗

e (T ))2 +
Tθ2

α
(5.14)

Therefore, the variance of the final fund under EUF is obtain as:

V ar(X̄∗
e (T )) = E(X̄∗

e
2(T ))− (E(X̄∗

e (T ))2 =
Tθ2

α
. (5.15)

This result coincides with that obtained by [25] under constant flow of contribution
of a PPM. This then lead to the following proposition.

Proposition 5.1. Let E(X̄∗
e (T )) be the expected terminal fund of a PPM with

time-dependent salary under EUF and E(X̄∗
c (T )) the expected terminal fund with

constant flow of contribution (for detail, see [25]), then
(i) E(X̄∗

e (T )) 6= E(X̄∗
c (T ));

(ii) E(X̄∗
e (T )) = E(X̄∗

c (T )) if and only if y = 1 and β = 0; and
(iii) V ar(X̄∗

e (T )) = V ar(X̄∗
c (T )).

Figure 5 shows the portfolio value in risky asset under EUF. It is observe that the
portfolio value will remain nonnegative overtime. The portfolio value in a riskless
asset under EUF is shown in figure 6. It is also observe that the portfolio value is
nonnegative at retirement.

6. Optimization of a PPM’s Portfolio and Wealth Using PUF

Consider the following PUF

Up(h, y) =
(h+ cy)1−γ

1− γ
, γ < 1. (6.1)

In this section therefore, we adopt the utility function defined in (6.1). Then, the
optimal portfolio value of the PPM under PUF is obtained as:

∆∗
P (t) =

(µ− r)(h+ cy)
γσ2(h+ ωp)

(6.2)
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Figure 5. Portfolio Value in Risky Asset under EUF: This is ob-
tained by setting µ = 0.09, σ = 0.3, β = 0.0292, c = 0.15, y0 = 0.9,
T = 20, r = 0.04, α = 0.5, ψ = 1, x0 = 0.865.

Equivalently,

∆∗
P (t) =

(µ− r)(X∗
P (t) + cY (t)− ωp)
γσ2X̄∗

P (t)
(6.3)

where, X̄∗
P (t) is the wealth process of the PPM at time t under PUF. Substituting

(6.3) into (2.5), we have

dX̄∗
P (t) =

(
(r +

θ2

γ
)X̄∗

P (t)− θ2ωp
γ

+ c(β − r)Y (t)
)
dt

+
θ

γ

(
X̄∗
P (t)− ωp

)
dW (t)

(6.4)

By application of Itô lemma to (6.4), we obtain the SDE that governs the evolution
of X̄∗2

P (t):

dX̄∗2
P (t) = ((2r +

2θ2

γ
+
θ2

γ2
)X̄∗2

P (t) + (2c(β − r)Y (t)− 2θ2ωp
γ2

(
θ2

γ
+ 1))X̄∗(t) +

θ2ω2
p

γ2
)dt

+
2θX̄∗

P (t)
γ

(X̄∗
P (t)− ωp)dW (t)

(6.5)
Taking mathematical expectation of (6.4) and (6.5), we obtain the following ODEs: dE(X̄∗

P (t)) =
(

(r +
θ2

γ
)E(X̄∗

P (t))− θ2ωp
γ

+ c(β − r)Y (t)
)
dt

E(X̄∗
P (0)) = x̄0

(6.6)
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Figure 6. Portfolio Value in Riskless Asset under EUF: This is
obtained by setting µ = 0.09, σ = 0.3, β = 0.0292, c = 0.15,
y0 = 0.9, T = 20, r = 0.04, α = 0.5, ψ = 1, x0 = 0.865.


dE(X̄∗2

P (t)) = ((2r +
2θ2

γ
+
θ2

γ2
)E(X̄∗2

P (t)) + (2c(β − r)Y (t)

−2θ2ωp
γ2

(
θ2

γ
+ 1))E(X̄∗(t)) +

θ2ω2
p

γ2
)dt,

E(X̄∗2
P (0)) = x̄2

0.

(6.7)

Then, the expected wealth of the PPM at time t is

E(X̄∗
P (t)) = x̄0e

(r+ θ2
γ )t+

γθ2ωp(1− e(r+
θ2
γ )t)

rγ + θ2
+
γc(β − r)y0
βγ − rγ − θ2

(eβt−e(r+
θ2
γ )t). (6.8)

At t = T , (6.8) becomes

E(X̄∗
P (T )) = x̄0e

(r+ θ2
γ )T +

γθ2ωp(1− e(r+
θ2
γ )T )

rγ + θ2
+

γc(β − r)y0
βγ − rγ − θ2

(eβT − e(r+
θ2
γ )T ).

(6.9)

But, ω∗p =
1

2ψ
+ E(X̄∗

P (T ))− cy0e
βT . It implies that

ω∗p =
rγ + θ2

rγ + θ2 − γθ2(1− e(r+
θ2
γ )T )

[
1

2ψ
− cy0e

βT + x̄0e
(r+ θ2

γ )T

+
γc(β − r)y0
βγ − rγ − θ2

(eβT − e(r+
θ2
γ )T )].
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By definition of ωp, we observe that ωp is decreasing function of ψ.
The expected optimal final fund can be rewritten in terms of ψ:

E(X̄∗
P (T )) =

rγ + θ2

rγ + θ2 − γθ2(1− e(r+
θ2
γ )T )

[x̄0e
(r+ θ2

γ )T +
γc(β − r)y0
βγ − rγ − θ2

(eβT − e(r+
θ2
γ )T )

−cy0e
βT γθ2(1− e(r+

θ2
γ )T )

rγ + θ2
+
γθ2(1− e(r+

θ2
γ )T )

2ψ(rγ + θ2)
].

(6.10)
It is easy to see that the expected optimal final fund is the sum of the fund that one
would get for investing the whole portfolio always in the risky asset with respect

to the riskless one plus the term
rγ + θ2

rγ + θ2 − γθ2(1− e(r+
θ2
γ )T )

(
γc(β − r)y0
βγ − rγ − θ2

(eβT −

e(r+
θ2
γ )T )− cy0e

βT γθ2(1− e(r+
θ2
γ )T )

rγ + θ2
) that depend on the contribution, γ, r, β and

Sharpe ratio. It is additional returns to the final fund generated from the contribu-

tions of the PPM plus a term
γθ2(1− e(r+

θ2
γ )T )

2ψ(rγ + θ2 − γθ2(1− e(r+
θ2
γ )T ))

that depends both

on the goodness of the risky asset with respect to the riskless one and the weight
given to the minimization of the variance. Hence, the higher the Sharpe ratio, θ,
the higher the expected optimal final fund of the PPM, everything else being equal.
Observe that as ψ → ∞, the expected terminal fund of the PPM decreases (i.e.,
the higher the importance given to the minimization of the variance of the final
fund, ψ, the lower its expected terminal fund). In that case, (6.10) becomes

E(X̄∗
P (T ))|ψ=∞ =

rγ + θ2

rγ + θ2 − γθ2(1− e(r+
θ2
γ )T )

[x̄0e
(r+ θ2

γ )T

+
γc(β − r)y0
βγ − rγ − θ2

(eβT − e(r+
θ2
γ )T )− cy0e

βT γθ2(1− e(r+
θ2
γ )T )

rγ + θ2
].

(6.11)

In the same vain, if y = 0, we have

E(X̄∗
P (T )) =

rγ + θ2

rγ + θ2 − γθ2(1− e(r+
θ2
γ )T )

[x̄0e
(r+ θ2

γ )T +
γθ2(1− e(r+

θ2
γ )T )

2ψ(rγ + θ2)
].

(6.12)
We now express the optimal portfolio under PUF as a function of variance min-

imizer and expected final wealth as follows:

∆∗
P (t) =

(µ− r)
γσ2X∗

P (t)

(
X∗
P (t)− E(X̄∗

P (T )) + cy0(eβt − eβT )− 1
2ψ

)
(6.13)

If we allow ψ →∞, (6.13) becomes

∆∗
P (t) =

(µ− r)
γσ2X∗

P (t)
(
X∗
P (t)− E(X̄∗

P (T )) + cy0(eβt − eβT )
)
. (6.14)

It is observe that the portfolio value of the PPM increases as ψ becomes large.
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Figure 7. Porfolio Value in stock for a PPM under PUF. This
is obtained by setting µ = 0.09, σ = 0.3, β = 0.0292, c = 0.15,
y0 = 0.9, T = 20, r = 0.04, γ = 0.9, ψ = 1, x0 = 0.865.

The expected value of the square of the fund under optimal control at time t is:

E(X̄∗2
P (t)) = x̄2

0e
νt +

(
kx̄0

β − ν + z
− kc(β − r)y0

(β − z)(β − ν + z)

)
(e(β+z)t − eνt)

+
kc(β − r)y0

(β − z)(2β − ν)
(e2βt − eνt) + w∗p{

(
kθ2

z(β − ν)
− gc(β − r)y0

(β − z)(β − ν)

)
(eβt − eνt)

+
(

gc(β − r)y0
(β − z)(z − ν)

− gx̄0

z − ν

)
(ezt − eνt)− kθ2

z(β − ν + z)
(e(β+z)t − eνt)}

+ω∗2p {
(
θ2

zν
− θ2

γ2ν

)
(1− eνt) +

gθ2

z(z − ν)
(ezt − eνt)}

(6.15)
where,

k = 2c2y0(β − r), z = r +
θ2

γ
, g =

2θ2

γ2

(
θ2

γ
+ 1

)
and ν = 2z +

θ2

γ2
.
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Figure 8. Porfolio Value in Cash Account for a PPM under PUF.
This is obtained by setting µ = 0.09, σ = 0.3, β = 0.0292, c = 0.15,
y0 = 0.9, T = 20, r = 0.04, γ = 0.9, ψ = 1, x0 = 0.865.

At t = T , we have

E(X̄∗2
P (T )) = x̄2

0e
νT +

(
kx̄0

β − ν + z
− kc(β − r)y0

(β − z)(β − ν + z)

)
(e(β+z)T − eνT )

+
kc(β − r)y0

(β − z)(2β − ν)
(e2βT − eνT ) + w∗p{

(
kθ2

z(β − ν)
− gc(β − r)y0

(β − z)(β − ν)

)
(eβT − eνT )

+
(

gc(β − r)y0
(β − z)(z − ν)

− gx̄0

z − ν

)
(ezT − eνT )− kθ2

z(β − ν + z)
(e(β+z)T − eνT )}

+ω∗2p {
(
θ2

zν
− θ2

γ2ν

)
(1− eνT ) +

gθ2

z(z − ν)
(ezT − eνT )}.

(6.16)

6.1. Efficient Frontier under PUF. We now express the second moment of the
optimal wealth as a function of ψ as follows:

E(X̄∗2
P (T )) = K1 + ω∗pK2 + ω∗2p K3

= K1 + (
1

2ψ
− cy0e

βt)K2 + (
1

2ψ
− cy0e

βT )2K3 + E(X∗(T ))(K2

+ 2(
1

2ψ
− cy0e

βT )K3) + E(X∗(T ))2K3
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where

K1 = x̄2
0e
νT +

(
kx̄0

β − ν + z
− kc(β − r)y0

(β − z)(β − ν + z)

)
(e(β+z)T − eνT )

+
kc(β − r)y0

(β − z)(2β − ν)
(e2βT − eνT )

,

K2 =
(

kθ2

z(β − ν)
− gc(β − r)y0

(β − z)(β − ν)

)
(eβT − eνT )

+
(

gc(β − r)y0
(β − z)(z − ν)

− gx̄0

z − ν

)
(ezT − eνT )− kθ2

z(β − ν + z)
(e(β+z)T − eνT )

and

K3 =
(
θ2

zν
− θ2

γ2ν

)
(1− eνT ) +

gθ2

z(z − ν)
(ezT − eνT ).

The variance of the PPM’s portfolio under PUF is obtained as

V ar(E(X̄∗
P (T ))) = E(X̄∗2

P (T ))− (E(X̄∗
P (T )))2

= q1(T ) + q2(T )E(X∗(T )) + q3(T )(E(X∗(T )))2 (6.17)

Setting

q1(T ) = K1 + (
1

2ψ
− cy0e

βt)K2 + (
1

2ψ
− cy0e

βT )2K3

q2(T ) = (K2 + 2(
1

2ψ
− cy0e

βT )K3),

q3(T ) = K3 − 1.

(6.17) becomes

V ar(X̄∗
P (T )) = q1(T ) + q2(T )E(X̄∗

P (T )) + q3(T )(E(X̄∗
P (T )))2. (6.18)

The standard deviation now becomes

σ(X̄∗
P (T )) =

√
q1(T ) + q2E(X̄∗

P (T )) + q3(T )(E(X̄∗
P (T )))2. (6.19)

If V ar(X̄∗
P (T )) = 0, it implies that q3(T )(E(X̄∗

P (T )))2 +q2(T )E(X̄∗
P (T ))+q1(T ) =

0. It then follows that

E(X̄∗
P (T )) =

−q2(T )±
√
q2(T )2 − 4q1(T )q3(T )
2q3(T )

. (6.20)

Observe from (6.20) that if q2(T )2 ≥ 4q1(T )q3(T ), the expected terminal wealth
will have real values, and real and imaginary values when q2(T )2 < 4q1(T )q3(T ).
(6.20) gives the expected terminal wealth of the PPM when the portfolio is free
from risky under PUF.

Figure 9 shows the efficient frontier of the PPM under PUF. It is observe that
PPM will stand to have 1 to 10 million and stand the risk of losing about 1 to 8
million.
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Figure 9. Efficient Frontier under PUF. This is obtained by set-
ting µ = 0.09, σ = 0.3, β = 0.0292, c = 0.15, y0 = 0.9, T = 20,
r = 0.04, γ = 2, ψ = 1, x0 = 0.865.

7. The Special Case, c = 0 (or y0 = 0)

By set c = 0, we obtained the usual portfolio selection problem. It is obvious
from the previous analysis, that inequalities still hold for c = 0 provided that the
initial wealth is greater than zero. We now summarize the expected terminal wealth
of the investor, taking c = 0 or y0 = 0 in (4.30), (5.12) and (6.10).

Corollary 7.1. Assume that an investor wants to invest a wealth of x0 > 0 for the
time horizon T > 0 in a financial market as in section (2.1) and wealth equation
(2.5). Assume that the investor maximizes the expected utility of final wealth at
time T under QUF, EUF and PUF. Then,

(i) E(X̄∗(T )) = x0e
rT +

eθ
2T − 1
2ψ

.

(ii) E(X̄∗
e (T )) = x0e

rT +
θ2T

α
;

(iii) E(X̄∗
P (T )) =

rγ + θ2

rγ + θ2 − γθ2(1− e(r+
θ2
γ )T )

[x0e
(r+ θ2

γ )T +
γθ2(1− e(r+

θ2
γ )T )

2ψ(rγ + θ2)
].

From Corollary 7.1, if we allow ψ to be considerably large (i.e., ψ →∞), then

E(X̄∗
P (T )) =

(rγ + θ2)x0e
(r+ θ2

γ )T

rγ + θ2 − γθ2(1− e(r+
θ2
γ )T )

; (7.1)

E(X̄∗(T )) = x0e
rT ; (7.2)
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E(X̄∗
e (T )) = x0e

rT +
θ2T

α
. (7.3)

Observe from (5.12) that E(X̄∗
e (T )) does not depend on ψ, so the increase or

decrease in ψ do not affect it. Also, observe from (7.2) and (7.3) that V ar(X̄∗
e (T )) =

E(X̄∗
e (T )) − E(X̄∗(T )) =

θ2T

α
. This implies that if α is considerably small, the

difference between E(X̄∗
e (T )) and E(X̄∗(T )) will be very large and vice versa.

Observe from (7.1) and (7.2) that
E(X̄∗

P (T ))
E(X̄∗(T ))

=
(rγ + θ2)e

θ2
γ T

rγ + θ2 − γθ2(1− e(r+
θ2
γ )T )

. We

then have the following propositions.

Proposition 7.2. Suppose that Corollary 7.1 holds, λ =
(rγ + θ2)

rγ + θ2 − γθ2(1− e(r+
θ2
γ )T )

,

then
(i) E(X̄∗(T )) = E(X̄∗

e (T )) if and only if ψ∗ =
α

2θ2T
(eθ

2T − 1);

(ii) E(X̄∗(T )) > E(X̄∗
e (T )) if and only if ψ∗ <

α

2θ2T
(eθ

2T − 1);

(iii) E(X̄∗(T )) < E(X̄∗
e (T )) if and only if ψ∗ >

α

2θ2T
(eθ

2T − 1);

(iv) E(X̄∗(T )) = E(X̄∗
P (T )) if and only if ψ∗ =

γθ2(1− e(r+
θ2
γ )T )− (rγ + θ2)(eθ

2T − 1)

2x0erT (rγ + θ2)(1− λe
θ2T

γ )
;

(v) E(X̄∗(T )) > E(X̄∗
P (T )) if and only if ψ∗ >

γθ2(1− e(r+
θ2
γ )T )− (rγ + θ2)(eθ

2T − 1)

2x0erT (rγ + θ2)(1− λe
θ2T

γ )
;

(vi) E(X̄∗(T )) < E(X̄∗
P (T )) if and only if ψ∗ <

γθ2(1− e(r+
θ2
γ )T )− (rγ + θ2)(eθ

2T − 1)

2x0erT (rγ + θ2)(1− λe
θ2T

γ )
.

7.1. Linear Relationship Between the Utility Functions. In this subsection,
we presents the linear relationship between PUF and QUF, EUF and QUF, and
PUF and EUF. The following propositions establish this facts.

Proposition 7.3. Suppose that Corollary 7.1 holds, then

(i) E(X̄∗
P (T )) = λ(

γθ2(1− e(r+
θ2
γ )T )

2ψ(rγ + θ2)
− e

θ2T
γ (eθ

2T − 1)
2ψ

) + λe
θ2T

γ E(X̄∗(T ));

(ii) E(X̄∗
e (T )) =

2ψθ2T − α(eθ
2T − 1)

2ψα
+ E(X̄∗(T ));

(iii) E(X̄∗
P (T )) = λθ2(

γ(1− e(r+
θ2
γ )T )

2ψ(rγ + θ2)
− Te

θ2T
γ

α
) + λe

θ2T
γ EX̄∗

e (T ).

Proposition 7.4. Suppose that (7.1), (7.2) and (7.3) hold, then
(i) V ar(X̄∗

e (T )) = E(X̄∗
e (T ))− E(X̄∗(T ));

(ii) E(X̄∗
P (T )) = λe

θ2T
γ E(X̄∗(T ));

(iii) E(X̄∗
e (T )) =

θ2T

α
+ E(X̄∗(T ));

(iv) E(X̄∗
P (T )) = −λθ

2Te
θ2T

γ

α
+ λe

θ2T
γ EX̄∗

e (T ).



MEAN-VARIANCE PORTFOLIO SELECTION WITH TIME-DEPENDENT SALARY 23

 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

E
x
p
e
c
te
d
 T
e
rm
in
a
l 
W
e
a
lt
h
 u
n
d
e
r 
P
U
F

Expected Terminal Wealth under QUF

Figure 10. PUF versus QUF on PPM’s Final Wealth.

Proposition 7.3(i) shows that a linear relationship exists between the expected fi-

nal funds under PUF and QUP with intercept λ(
γθ2(1− e(r+

θ2
γ )T )

2ψ(rγ + θ2)
−e

θ2T
γ (eθ

2T − 1)
2ψ

)

and gradient λe
θ2T

γ . Similarly, Proposition 7.3(ii) shows that a linear relation-
ship exists between the expected final funds under EUF and QUF with intercept
2ψθ2T − α(eθ

2T − 1)
2ψα

and gradient one. Also, Proposition 7.3(iii) shows that there

is a linear relationship between the expected final fund under PUF and EUF with

intercept λθ2(
γ(1− e(r+

θ2
γ )T )

2ψ(rγ + θ2)
− Te

θ2T
γ

α
) and gradient λe

θ2T
γ .

The following figures were obtain by setting µ = 0.09, σ = 0.3, β = 0.0292,
c = 0.15, y0 = 0.9, T = 20, r = 0.04, γ = 0.9, x0 = 0.865, α = 0.5, ψ = 1.

Figure 10 shows the linear relationship between final wealth for PUF and QUF.
It is observe that when the final wealth under PUF increases by about 83%, it will
lead to about 100% increase in final wealth under QUF. It implies that the ratio of
increase between PUF and QUF is 8.3 : 10.

Figure 11 shows the linear relationship between final wealth for EUF and QUF.
It is observe that at about 100% increase in the final wealth from QUF will lead to
about 180% increase in the final wealth of EUF, that is a ratio of 10 : 18.

Figure 12 shows the linear relationship between final wealth for PUF and EUF.
It was found that at 100% increase in the final wealth under EUF leads to about
83% increase in the final wealth under PUF.



24 CHARLES I. NKEKI

 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1

2

3

4

5

6

7

E
x
p
e
c
te
d
 W
e
a
lt
h
 f
o
r 
E
U
F

Expected Wealth for QUF

Figure 11. EUF versus QUF on PPM’s Final Wealth.
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Figure 12. PUF versus EUF on PPM’s Final Wealth.
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8. Conclusion

In this paper, we examined a mean-variance portfolio selection problem with
time-dependent salary in the accumulation phase of a defined contribution (DC)
pension scheme. The optimal portfolio processes and expected wealth for the PPM
were established. The efficient frontier of a PPM portfolio in mean-standard devi-
ation under Quadratic Utility Function (QUF), Power Utility Function (PUF) and
Exponential Utility Function (EUF) were established. The trade off between the
expected final wealth for the PPM under PUF and QUF, EUF and QUF and PUF
and EUF were established.

Acknowledgments. The authors would like to thank the anonymous referee for
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